
REFERENCE COPY

SANDIA REPORT
SAND91– 1752 l UC–705
Unlimited Release
Printed May 1991

PHYSLIB:
A C++ Tensor Class Library

‘9

.

Kent G. Budge

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

‘.

.%?$

SNLR LIBRARY

11111111
8433967

SAND91 - 1752
0002
UNCLASSIFIED

05/91
86P STAC:

,,, /,,

.

.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation,
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy,

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: AO1

.- .

SAND91-1752
Unlimited Release

Printed 10/9/9 1

Distribution
UC-705

PHYSLIB:
A C++ Tensor Class Library

Kent G. Budge
1431

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

PHYSLIB is a C++ class library for general use in computational physics applications. It
defines vector and tensor classes and the corresponding operations. A simple change in the
header file allows the user to compile either 2-D or 3-D versions of the library.

3

Acknowledgment

The author acknowledges the assistance of J.S. Peery for reviewing this library and for
much discussion of general C++ programming issues.

,. .,, ,

Acknowledgment .

Contents .

Contents

. 4

. 3

Preface7

sumq9

1.

2.

[ntioduction ..ll

1.1 Vector and Tensor Operations and Notation . 11

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

Vectors ..ll

Tensors ..l2

Symmetric and Antisymmetric Tensors ..l4

Vector and Tensor Components; Indicial Notation ..l4

Einstein Summation Convention ...+. 15

Dimensionality ..l6

1.2 Object-Oriented Programming and the C++ Language ..l7

1.2.1 Data Abstraction ..l8

1,2.2 Special Member Functions and Dynamic Memory Management..18

1.2.3 Function and Operator Overloading ..l9

The PHYSLIB Library ..2l

2.1

2.2

2,3

2.4

class Vector ..2l

2.1.1 Private Data Members ..2l

2.1.2 Special Member Functions ...22

2.1.3 Utility Functions ...24

class Tensor ...25

2.2.1 %ivate Data Memkrs ...25

2.2.2 Special Memkr Functions ...25

2.2.3 Utility Functions# ..l3l

class SymTensor ...32

2.3.1 Private Data Members.. ..> ...32

2.3,2 Special Member Functionsss ...32

2.3.3 Utfii~Functions ...36

class AntiTensor . , . .,,,...,, . 37

2.4.1 Private Data Members ..37

2.4.2 Special Member Functions ...37

2.4.3 Utility Functions~

2.5 Operator Overload Functions4l

2.6 Methods ...50

2.7 Predefine Constants ...56

3. Using the PHYSLIB classes59

3.1 Useless Operations... ..60

Conclusion6l

References ..63

Index of Operators and Functions..65

Distribution69

Preface

C++ is the first object-oriented programming language which produces sufficiently effi-
cient code for consideration in computation-intensive physics and engineering applica-
tions. In addition, the increasing availability of massively parallel architectures requires
novel programming techniques which may prove to be relatively easy to implement in
C++. For these reasons, Division 1541 at Sandia National Laboratories is devoting consid-
erable resources to the development of C++ libraries.

This document describes the first of these libraries to be released, PHYSLIB, which de-
fines classes representing Cartesian vectors and (second-order) tensors. This library con-
sists of the header file phys 1ib.h, the inline code file phys 1ib. inl, and the source
file phys 1ib. C.The library is applicable to both three-dimensional and two-dimension-
al problems; the user selects the 2-D version of the library by defining the symbol
TWO_D in the header file phys 1ib.h and recompiling phys 1ib. C and his own code.
Alternately, system managers may wish to provide duplicate header and object modules of
each dimensionality.

This code was produced under the auspices of Sandia National Laboratories, a federally-
funded research center administered for the United States Department of Energy on a non-
profit basis by AT&T. This code is available to U.S. citizens and institutions under re-
search, government use and/or commercial license agreements.

Federal agencies, universities, and other U,S. institutions who wish to support further de-
velopment of this code and its sister codes are encouraged to contact Division 1541, Sand-
ia National Laboratories. Division 1541 welcomes collaborative efforts with qualified
research institutions.

The PHYSLIB library is @ 1991 Sandia Corporation.

(Intentionally Left Blank)

Summary

PHYSLIB defines the following classes:

class Vector Cartesian vectors

class Ten sor Cartesian 2nd-order tensors

class SymTensor Cartesian 2nd-order symmetric tensors

class AntiTensor Cartesian 2nd-order antisymmetric tensors

Methods that are defined for these classes include the following:

Dot and outer products

Cross products for vectors

Other arithmetic operations

Duals (dot or double dot product with the permutation symbol)

Trace of tensors

Transpose of tensors

Determinants and inverses of tensors

Symmetrk and antisymmetric part of tensors

Scalar invariants of tensors

Norms

Colon operator (scalar product of tensors)

Deviatoric part of tensors

9

(Intentionally Left Blank)

10

Introduction

1. Introduction

Almost every branch of theoretical physics makes use of the concepts of vectors and tew

sors. Vectors are conceptually simple; they are quantities having both magnitude and di-
rection, such as the velocity of a particle. Tensors are conceptually more difficult. They
represent rules that relate one set of vectors to another, and they appear in many physical
formulae.

Division 1541 at Sandia National Laboratories recently began work on a new computer
code, RHALE++, which calculates the behavior of materials subjected to strong shock
waves. The equations describing the physics of strong shocks are vector and tensor equa-
tions. In the past, great effort has been required to correctly translate these equations into
computer code.

This document briefly reviews the mathematics of vectors and tensors; discusses the basic
difficulties in translating vector and tensor equations into computer code; and describes
how a new and very promising computer language, C++, has been used to alleviate these
difficulties, thereby producing reliable, reusable, and transparent computer code at a much
reduced cost in programmer effort.

1.1 Vector and Tensor Operations and Notation

We briefly review the basic concepts and language of vectors and tensors. A more com-
plete discussion can be found in [2].

1.1.1 Vectors

A vector is a physical quantity such as velocity that has both a magnitude (“five hundred
krn/see”) and a direction (“towards the northeast”). It may be written as a lowercase sym-
bol with an arrow over it, such as t. Quantities such as temperature or mass that have
magnitude but no direction are called scalars and are represented by lowercase symbols
without an arrow, such as u.

The magnitude or norm of a vector ~ is written as Iiil and is a scalar, while its direction
may be written as a. The direction of a vector is itself a vector with magnitude 1 (called a
unit vector).

A vector may be multiplied by a scalar. The result is a vector with the same direction as
the original vector and with a magnitude equal to the product of the scalar and the magni-
tude of the original vector. That is,

if ; = c; then Iil = ICI 121 and L = f~ (1)

If c <O, the resulting vector has the opposite direction from the original vector.

11

Introduction

Vectors may be added to or subtracted from each other; they obey the same algebraic rules
as real numbers under addition and subtraction. Vector addition may be visualized by pic-
turing each vector as an arrow with a length equal to its magnitude, as illustrated below:

Figure 1. Addition of Vectors

A

The opposite of a vector is a vector with the same length but in the opposite direction.

Vectors may not be multiplied in the same sense as real numbers. However, several opera-
tions exist which are distributive and which are therefore spoken of as “products”, The in-
ner product (or dot product) of two vectors is a scalar and is written

;Wi (2)

It is defined as the product of the magnitudes of the two vectors and the cosine of the angle
between them, that is,

a.; = Ialltlcoseab. (3)

Thus, the dot product is zero if the vectors are perpendicular. The dot product is distribu-
tive and commutative, that is,

. .
a. (b+:) =a.b+a.: (Distributive Lmw) (4)

;o~+; (Commutativelaw) (5)

The outer product of two vectors is a tensor; it is discussed below.

1.1.2 Tensors

A tensor is a rule that turns a vector into another vector, and it is represented symbolically
by a boldface capital letter, such as A. We write

12

Introduction

to indicate that when the tensor A is applied to the vector ~, it returns the vector ii. Not all
rules that turn vectors into other vectors are tensors; a tensor must be linear, that is, it must
be true for all ii, ~, and c that

and

A (L@ = (:Ah.

It is customary to regard

(8)

the vector h in Equations (6) as the product of the tensor A and
the vector ~. We say that the vector ~ is lejt-rnukiplk?d by the tensor A , It is also possible
to write expressions of the form

?=~A (9)

in which the vector ; is right-multiplied by the tensor A . If

A;=;B (lo)

for all vectors ~, we Mythat A is the (ranspose of B and write

A = BT. (11)

Tensors may be added and subtracted according to the usual algebraic rules, Addition is
defined such that

A=B+C iff A;=B~+Cb forall~ (12)

The product of two tensors is defined such that

A =BC iff A;= B(C6) foralt ~ (13)

The outer product of two vectors is a tensor and may be written

A=it?Jt (14)

It is defined by

A=ti8~ iff Ai= (~~~)ii forall L

Note that the outer product is not commutative, unlike the inner produc~ since

a@;= (b@a)T (16)

Many derived quantities in physics are expressed as tensors. For example, we observe in
the laboratory that a reflective surface exposed to a set of light sources feels a force which
depends on the orientation and area of the surface. lf we form a vector i whose magnitude

(15)

13

Introduction

is equal to the surface area and whose direction is perpendicular to the surface, we find
that the force experienced by the surface is given by

]=p; (17)

where P is a tensor (the radiation pressure tensor) which depends only on the intensity and
location of the light sources relative to the location of the reflective surface.

Likewise, consider a body subjected to deformation. Let the displacement between two
nearby particles in the undeformed body be represented by the vector ii and the displace-
ment between the same two particles after deformation be represented by the vector;’.

The two vectors are related by the expression

~’ = J; (18)

where J is called the Jacobian tensor, We note that J may be different at different points in
the body.

1.1.3 Symmetric and Antisymmetric Tensors

Many tensors important in physics are symmetric;

AT=A

that is,

(19)

Likewise, there are important tensors which are antisymmetric, having the propefiy

AT=–A. (20)

If a tensor is known to have one of these symmetry properties, calculations involving that
tensor can usually be simplified. In addition, it is sometimes useful to split a full tensor
into symmetric and antisymmetric parts via the formulae

Sym(A) = ~ (A +AT) (21)

Anti(A) = ; (A -AT) (22)

lt is easily verifieclthat these two tensors have the indicated symmetry properties and that
A = Sym(A)+Anti(A).

1.1.4 Vector and Tensor Components; Indicial Notation

Computers a_reunable to handle vectors and tensors directly. Their hardware is designed to
add, subtract, multiply, and divide representations of real numbers,

Fortunately we can represent vectors and tensors as sets of real numbers. However, to do
so, we must establish an arbitrary ~rmne Ofre~erence. We do this by selecting three mutual-

14

Introduction

ly orthogonal directions i, j, and z. These correspond to the x, y, and z axes of a Cartesian
coordinate systelm. We can then express any vector in the form

The three numbers al, az, and a3 (the components of the vector) are real numbers and can
be processed by a computer, Using Equation (23), we can represent any vector operation
as a sequence of operations on sets of real numbers. We use the symbol aj to represent the
set of real numbers u,, a2, and u,.

Some computers are optimized to perform calculations on sets of real numbers; computer
scientists refer to these as vector computers, but the word “vector” is not being used in the
sense understood by physicists.

We can write any tensor in the form

Thus, a computer can treat a tensor as if it was an array of nine real numbers. These real
numbers are spoken of as the components of the tensor. We represent this set of numbers
by the symbol Aij.

We thus have a way to handle vectors and tensors on computers, but at a price: we must re-
place each vector and tensor by a set of real numbers and each vector or tensor operation
by a (possibly extensive) sequence of operations on sets of real numbers. This sequence of
operations is written using indicial nolation, For example, the inner or dot product of two
vectors is written in symbolic notation as

r=~.t. (25)

It can be written in indicial notation as

3

r=
x

aibi. (26)
i=l

where ai and bi are the components of the vectors ii and ~. Proofs of the equivalence of

the symbolic and indicial representations of vector operations will not be presented in this
report.

1.1.5 Einstein Summation Convention

Sums over all values of an index, such as Equation (26), are so common that it is custom-
ary to adopt the Einstein summation convention. Under this convention, any term in which

15

Introduction

an index is repeated, such as aibi, is interpreted to mean a sum over all values of the index
i. That is,

3

aibi (Einsteinconvention) e z aibi (ordinaryusage)
i=[

If more thanone index is repeated, we have a multiple sum, e.g.,

33

a#ijcj (Einsteinconvention)e ~ ~ aillijcj(ordinaryusage).

(27)

(28)
i=l j=l

We use the Einstein summation convention throughout this report.

1.1.6 Dimensionality

Physical space is three-dimensional, and the foregoing discussion reflects this fact. How-
ever, there are many physical situations where a high degree of spatial symmetry permits a
simplified treatment of vector and tensor calculations. RHALE++ therefore has been writ-
ten in 2-D and 3-D versions. IrI the 2-D version, one assumes either plane symmetry or
axisymmet7y.

Plane symmetry represents the case in which there is perfect translational and reflective
symmetry along the ? direction. Axisymmetry is the case in which rotational and reflective
symmetry exists around an axis in the ; direction. In either case, certain components of
tensors are guaranteed to be zero in the calculations performed by RHALE++ and similar
programs.

To take advantage of this, the PHYSLIB library can be setup for either normal 3-D calcu-
lations or 2-D calculations. To set up PHYSLIB for 2-D calculations, one defines the mac-
ro TWO_D at the start of the file phys 1ib.h;tosetup for 3-D calculations, this macro is
left undefined.

The librarycode contains compiler directives that test this macros and compiles different
portions of the code depending on whether the macro is defined. Thus, when a 2-D pro-
gram is being compiled, the tensor components that are guaranteed to be zero can be omit-

ted, savingmemory and computationtime,

In addition, an integer constant, DIMENSION, is set to the number of dimensions (2 or 3).

16

Introduction

1.2 Object-Oriented Programming and the C++ Language

One of the characteristics of computational physics programs is their growing complexity.
It is not now uncommon for a production code to exceed one hundred thousand lines in
length when written in traditional programming languages such as FORTRAN. Such huge
codes are also found in the areas of advanced graphics and operating systems.

Large codes are extremely difficult to manage. To alleviate this problem, one has to rely
on a coherent, well-organized programming style. Programming style includes techniques
that do not change the basic calculations performed by a program and which might not
even alter the machine language translation.

The most obvious element of style is the incorporation of comnwnr.s and indention. Com-
ments are sections of text that the compiler is instructed to ignore, but which convey clari-
fications and explanations to a human reader. Good programmers make extensive use of
commenting, especially in older languages; it is not uncommon for a well-written FOR-
TRAN program to consist of 509Z0comment lines. Indention is the intelligent use of white
space (blanks, tabs, and empty lines), which are ignored by the compiler, to indicate pro-
gram structure. It is also an important feature of good FORTRAN coding, where indention
helps delineate the structure of DO loops and IF-THEN constructs.

Unfortunately, commenting and indenting alone are not sufficient to render a code trans-
parent to the human reader. Modern programming languages therefore include grammar
that facilitates block-structured programming. Block-structrued programs are broken
down into logical units, each of which is relatively easy to understand. For example, itera-
tiveloops are written nowadays using a specific grammar that indicates that the loop is a
logical unit, GOTO statements are generally avoided, since they tend to blur the bound-
aries of logical units. An important part of block-structured programming is the care with
which the programmer breaks the code down into relatively small subroutines, each of
which is easy to understand, and builds a tree of subroutine calls to implement his algo-
rithm.

Block-sb-uctured programs maybe written either in a top-down or a bottom-up fashion. In
top-down programming, one writes a program at the top level first, using calls to as-yet
nonexistent subroutines to represent major parts of the calculation; the first level of sub-
routines is then written the same way, writing each subroutine as a sequence of calls to
lower-level subroutines, and so on. In bottom-up programming, one builds the lowest-lev-
el subroutines first, then combines these into somewhat higher-level subroutines, and so

on, Both approacheshave their merits.

The most recent trend in programming style is towards object-oriented programming.
Conventional computers are sequential; a single processor steps through a program, carry-
ing out one task at a time. Programs written in traditional programming languages there-
fore support the model of a program as a sequence of tasks. This is known as procedural
programming, because a sequence of procedures is being carried out,

17

Introduction

Modern supercomputers are not purely sequential. In particular, vector processors such as
Cray or Convex supercomputers process entire blocks of data in an assembly-line fashion.
Massively parallel computers such as MIMD machines have many processors which can
operate independently. For such computers, the sequential model is not ideal. Instead, one
uses an object-oriented approach in which the program is though of as a set of interacting
data objects. This approach has proven to be fruitful even on traditional sequential com-
puters. It seems to mesh well with the concept of block-structure programming; not only is
code divided into logical units, but so is data. Closely related to the concept of object-ori-
ented programming is the concept of data abstraction. This is the notion that a data struc-
ture should be treated as a coherent unit wherever possible, with only a few routines
accessing its individual components.

C++ is the first efficient high-level language with object-oriented capability to become
widely popular. Because well-written C++ code approaches the efficiency of conventional
C coding, C++ may prove to be the language of choice for large scientific computing
projects. A description of the C++ language is beyond the scope of this report. However,
we briefly describe the advantages of C++ below.

The definitive feature of C++ is the class [1]. This is essentially a programmer-defined
data type that supplements the standard data types (such as int, flost, or doub 1e)that
are part of the language. A class is dw~ared, usually in a header file, at which time the
compiler knows its characteristics; individual variables or instances of the class may then
be declared by the programmer.

1.2.1 Data Abstraction

A class declaration typically includes data members and specifies member access rules.
The data members are a set of floating numbers, integers, pointers, or instances of simpler
classes. For example, a class representing complex numbers would probably contain two
floating variables as data members: one for the real and one for the imaginary part of the
complex number. Each time a variable of a given class is declared, enough memory is set
aside to hold its data members.

Classes enforcedataabstraction.Generallyspeaking,thedatamembers ofa classaredi-
rectlyaccessibleonlytoa setoffunctionsenumeratedwithintheclassdefinition.These
functions are the only place where an instance of a class is not viewed as a coherent object.

The PHYSLIB library is built around the concept of data abstraction.

1.2.2 Special Member Functions and Dynamic Memory Management

The special member functions of a class are utility functions that create, destroy, or assign
values to an instance of a class. Thus, whenever a class variable is declared, a conshuctor
function is called to initialize the object. Likewise, when a class variable goes out of scope
and is no longer needed, a destructor is called to do any necessary cleanup before its mem-
ory is freed. This makes it possible to carry out sophisticated dynamic memory manage-
ment in a transparent manner. For example, a large array of floating numbers can be
represented by a class with constructor and destructor functions. The constructor func-

18

Introduction

tions, which are automatically called when a variable of the array class is declared, can al-
locate the appropriate amount of memory. The destructor, which is automatically called
when the variable goes out of scope, can return the memory to the system. The program-
mer sees none of this; he only writes a constructor and des~uctor function, and the compil-
er sees to it that they are called at the appropriate times.

PHYSLIB does not make use of such memory management mechanisms, but future re-
ports will discuss how memory management is carried out in more sophisticated classes
used in RHALE++.

If a class has no constructor functions, the compiler simply allocates memory for the data
members whenever an instance of the class is declared. Likewise, if a class has no destruc-
tor function, the compiler simply frees the memory allocated for an instance of a class
when it goes out of scope.

Other special member functions may be declared to assign values to an object. For exam-
ple, an instance of an array class would need to free its old storage area before allocating
new memory to receive a new value. If no assignment function is declared for a class, the
compiler simply copies the values of all the data members when an assignment is made.

1.2.3 Function and Operator Overloading

When data abstraction is implemented in less sophisticated programming languages, the
code tends to dissolve into many calls to a few privileged routines that manipulate individ-
ual components of the various data structures. Many of these routines implement distinct
operations on the data structures that could just as well be represented by arithmetic oper-
ators. For example, if data structures representing complex numbers are used in a C pro-
gram, there will be many calls to functions that implement complex addition and
multiplication.

The C++ language permits programmers to overload the standard set of operator symbols.
For example, the programmer can declare that the ‘*‘ operator represents complex multi-
plication when applied to complex variables. This adds a new context-dependent meaning
to this symbol. The compiler can distinguish whether the ‘*‘ represents ordinary floating-
point multiplication or complex multiplication by examining the type of its operands.

When an overloaded operator is used in this manner, the compiler replaces it with a call to

the appropriate function defined by the programmer. Thus, the actual machine code gener-
ated is not much different than that described above for a C program. However, the code

the programmer writes is much more aesthetically pleasing; and, when another program-
mer is trying to read and understand the code, aesthetics is everything.

The C++ language permits programmers to overload function names as well as operators.
Every function declaration includes the argument list, as with ANSI C. However, more
than one function with a given name can exist if they have different argument lists. When
one of the functions is called, the compiler selects the correct function based on the types

19

Introduction
#

of the arguments. If a function call has an argument list that does not match any function
by that name, the compiler reports an error.

Consider this example of a C code:

#include <math. h>

#include “complex. h“

main() {

struct Complexa = {3. , 2.5}, b= {2. , 0.}, c;

c = CSqrt(CAdd (CMult(a, a) , CMult(b, b))) ;

fprintf (“The result is %f, %f\n”, c.Real, c. Imag) ;

1

This short program evaluates and ptits a complicated complex expression. Note the many
function calls needed to implement data abstraction.

In C++ one might have

#include <math. h>

#include “complex. h“

maino{

Complex a(3. , 2.5), b(2. , O.), c;

c = sqrt(a*a + b*b) ;

fprintf (’’The result is %f, %f\n”, c.Realo, c.Image);

}

This illustrates how the function calls have been replaced by more transparent operator
notation. The actual machine code generated by the compiler replaces the operators with
the appropriatefunction calls. In addition, the sqrt () function has been overloaded;the
two versions are double sqrt (const double) and Complex sqrt (const
Complex).The first version takes and returns floating point numbers, while the second
takes and returns complex numbers. In the program above, the second version has been
used, which the compiler correctly recognizes horn the fact that a*a + b *b k an ex-

pression with type Complex.

20

2. The PHYSLIB Library

The PHYSLI13 library consists of three files: a header file, phys 1 lb. h, an fine func-
tion file, physlib. inl; and a C++ source file, physlib. C.

The header file contains C++ code that defines the four classes described below. It must be
included at the start of any C++ program that wishes to use these classes. The header file
in turn includes the inline function file, which contains additional C++ code to define the
various operator overloads and methods that are defined for the P*SLIB classes. The
source file contains a few large functions that are not appropriate for inlining, and it is
compiled and linked with the users’ code.

Inlining is a way to reduce computation time at the cost of increased memory usage. An
inline function is not actually called whenever it is referenced; instead, a local copy of the
function body is inserted in the calling routine by the compiler. ~s eliminates the over-
head associated with making a function call and permits global o@i@izati&s (such as
vectorization) that are normally inhibited by function calls. The tr@e-off is that there are
numerous local copies of the function in the code rather than one global copy. If the func-
tion is very simple and is called many times, as is usually the case for PHYSLIB func-
tions, the savings in computation time are worth the increase in memory usage.

In each case, the reference frame is implied by the values used to initialize the vectors and
tensors in a calculation. In addition, it is assumed that all floating numbers are represented
in double precision. This is wweful on intrinsically double-precision machines such as a
Cray; the Criay version of the library will replace double withflost everywhere.

2.1 class Vector

This class represents Cartesian vectors, which are quantities having both magnitude and
direction.

Symbolic Notation: 6 Indiciai Notation: ai

2.1.1 Private Data Members

double x; X component of vector (al)

double y; Y componentof vector (a2)

double z; Z componentof vector (UJ

The Z component is required even in the 2-D version of the library. This is because
RHALEH and some other finite element codes use a rotation algorithm hat requires vec-
tors with Z components,

The PHYSLIB Library

2.1.2 Special Member Functions

Vector (void) ;

Samp[e code:

Vector a; // Default constructor called

// when a is declared

This isthedefault constructorforinstances ofthevector class. Itdoes nothing
to initialize the vector. It is declared only to let the compiler know that initializa-
tion can be skipped.

Vector(const double, const double, const double) ;

Sampleco&:

Vector a(5., 6., 2.);

Constructavector with the given components.

Vector(const Vector&);

Samplecode:

Vector a;

Vector b = a; // Construct and initialize

Thisisthecopyconstructorforobjectsofcla,ssVector.Itisdefinedmainlytoen-
hancevectorization on CRAYcomputers.

Vector& operator=(const Vector&);

Sample code:

Vector a, b;

a=b;

ThisistheassignmentoperatorforobjectsofclassVector.ltisdefinedmainlyto

enhancevectorizationonCRAYcomputers.

double X(void) const;

22

The PHYSLIB Library

Symbolic notation: t ● 1 lndicial notation: al

Samp!e code:

Vector a;

print f(’’The X component of a is %f\n”, a.X());

double Y(void) const;

Symbolic notation: h wj Indicial notation: az

Sump[e co&:

Vector a;

printf(’’The Y component of a is %f\n”, a.Y()) ;

double Z(void) const;

Symbolic notation: ii.? Indicial notation: a~

Sample co&:

Vector a;

printf(’’TheZ component of a is %f\n”, a.Z()) ;

void X(const double) ;

Symbolic notation: None Indicial notation: al +s

Sample code:

Vector a;

a.X(2.); // set X component of a to 2.

void Y(const double) ;

Symbolic notation: None lndicial jwtution: az+s

Sample code:

Vector a;

23

The PHYSLI13 Library

a. Y(2 .); // set Y componenz of d to 2.

void Z(const double).;

Symbolic notation: None Indiciai lwtation: Ul+s

Sample co&:

Vector a;

a. Z(2 .); // set Z component of a to 2.

Provide accessto the componentsof avector. his isrequired chieflyforI/Obut
is also ameansfor letting future classes work with vectors without requiring a
huge list of friend functions in the vector class definition. [t does not violate the
idea of data abstmction, since nonpnvileged functions must still access the com-
ponents of a vector through a functional interface.

2.1.3 Utility Functions

int fread (Vector&, FILE*) ;

int fwrite (const Vector, FILE*) ;

int fread (Vector*, int, FILE*) ;

int fwrite(const Vector*, const int, FILE*) ;

Sump\e code:

Vector a, b, c[2], d[51;

FILE* InFile, Out File;

fread (a, InFile) ;

fread (c, 2, InFile) ;

fwr~te (b, Out File) ;

fwrite (d, 5, OutFllej;

~eseoverloads provide auonvenient intefidce tothefread() and fwriteo
Iibrary functions for binaryinput/output. The second version ofeach is intended
forarrays ofvectors (e.g., Veckor c[2] ; declares an array of two vectors),

These functions were written to be as consistent as possible with the standard
freado and fwriteo functions.Thus,theyare.friendsratherthanmember
functions,andtheintegerreturned is the number of objects read or written.

24

The.PWSLIB Library

2.2 class Tensor

This class represents general Cartesian 2nd-order tensors. In the 2-D version, the off-diag-

onal z-S A13,A13,All, and An = omitted. me ~agonal z @M4 A3v is n~ed in 2-D
finite element codes,

Symbolic notation: A Indicial rwkztion: Ail

2.2.1 Private Data Members

double xx;

double xy;

double xz;

double yx;

double yy;

double yz;

double zx;

double zy;

double zz;

xx component of tensor (A,,)

xy component of tensor (A,Z)

xz component of tensor (A ,3)

yz component of tensor (Azl)

yy component of tensor [Az)

yz component of tensor (Az,)

zx component of tensor (A31)

zy component of tensor (A32)

zz component of tensor (AJ~)

2.2.2 Special Member Functions

Tensor (void) ;

Sampleco&:

Tensor a; // Declare an uninitialized

// tensor.

Default constructor for instances of the Tensor class.

Tensor (const double, const double, const double, const

double, const double, const double, const double,

const double, const double) ;

Sample code:

25

The PHYSLIB Library

Tensor a(2. , 3., 5.,

4 6., 4.,.1

1 9., 11.);-t

Construct a tensor with the given components. The arguments corresponding to
off-diagonal z ten-m are omitted in the 2-D version,

Tensor (const Tensor&) ;

Sample co&:

Tensor a;

Tensor b = a; // Construct and initialize

ThisisthecopyconstructorforobjectsofclassTensor.Itisdefinedmainlytoen-

hance vectorization on CRAY computers,

Tensor& operator= (const Tensor&) ;

Sample code:

Tensor a, b;

a=b;

Thisisthe assignment operator for objects of class Tensor. It is defined mainly to
enhance veztorization on CIWY computers.

Tensor (const SymTensor) ;

Tensor (const AntiTensor) ;

Sample co&:

SymTensor a;

AntiTensor b;

Tensor c = a, d = b;

Convert a symmetric or antisymmetric tensor to full tensor representation. These
operators become standard conversions that the compiler invokes implicitly
where needed. However, most operators are explicitly defied for mixed tensor
types, since this is more efficient.

26

The PHYSLIB Library

These conversions are somewhat dangerous, since useless operations such as
Trans (SymTensor) orTr (AntiTens or) willbeacceptedbythecompiler.
The worstconsequenceofpermittingtheseconversionsisthatoperationssuch as
Inverse (AntiTensor) willbe attemptedandresultina singular matrix er-
ror. The RHALE++ development team felt that, since these conversions are so
natural, they should be included in PHYSLIB in spite of the potential dangers.

Tensor& operator= (const SymTensor) ;

Tensor& operator= (const AntiTensor) ;

Sample co&:

SymTensor a;

AntiTensor b;

Tensor c, d;

c=a;

d=b;

Assign a symmetric or anti symmetric tensor value to a preexisting tensor vari-
able. If these operations were not defined, the compiler would call the conversion
constructors defined above and assign the result, which is less efficient than as-
signing the values directly,

double XX (void) const ;

Symbolic notation: 2A~ Indicia! notation: A,,

Sample co&:

Tensor A;

printf (“The XX component of A is %f “, A. XX());

double XY (void) const;

Symbolic notation: iA ~ Indicial notation: A ,Z

Sample couk:

Tensor A;

27

The PHYSLIB Library

printf (“The XY component of A is %f”, A.XY());

double XZ (void) const;

Symbolic notation: ?A 2 Indicial notution: A,B

Sample co&:

Tensor A;

prlntf(’’The XZ component of A is %f”, A.XZ());

double YX(void) const;

Symbolic notation: jAi

Sample code:

Tensor A;

printf(’’The YX component of A is %f”, A.YX()) ;

double YY(void) const;

Symbo[icnotation: fAj Indicidt iotutiw :A22

Indicial notation :A21

Samp[ecode:

Tensor A;

printf(’’The YY component of A is %f”, A.YY());

double YZ(void) const;

Symbolic notation: 5A? Itldil’idl notution: A2J

Samplecode:

Tensor A;

printf(’’The YZ component of A is %f”, A.YZ()) ;

double ZX(void) const;

28

The PHYSLIB Lhary

$m.bolic notation: fAl Indicial notation: AJL

Sample co&:

Tensor A;

printf (“The 2X component of A is %f”, A. ZX());

double ZY(void) const;

Symbolic notation: ?Aj Indicial notation: An

Sarnpkc ode:

Tensor A;

printf(’’The ZY component of A 1s %f”, A.ZY());

double ZZ(void) const;

Symbolic notation: 2A? Indicial notation: Ay~

Sample code:

Tensor A;

printf(’’The ZZ component of A is %f’, A.ZZ());

void XX(const double) ;

Symbolic notation: None Indicial notation: A,1+s

Sampleco&:

Tensor A;

A.XX(3.); II Set XX component of A to 3.

void XY(const double) ;

Syrnbolicnotation :None Indicial notation: A~z+s

Sample code:

Tensor A;

29

The PHYSLIB Library

A. XY(3 .); // Set XY component of A to 3.

void XZ(const double) ;

Symbolic notation: None Indicial notation: A1~+s

Sample co&:

Tensor A;

A.XZ(3.); // Set XZ component of A to 3.

void YX(const double) ;

Symbolic notation :None

SampLeco&:

Tensor A;

A.YX(3.);

Indicial notation: Azl i-s

// Set YX component of A to 3.

void YY(const double) ;

Symboknutation: None Indicia\ notation: AZ +s

Sampleco&:

Tensor A;

A.YY(3.);

void YZ(const double) ;

Symbolic notatwn: None

// Set YY component of A to 3.

Indicial notation: Am +s

Sample co&:

Tensor A;

A.YZ(3.); // Set YZ component of A to 3.

void ZX(const double) ;

Symbolic rwtution: None Indiciainotation :A31+s

30

The PHYSLIB Library

Sample cotk:

Tensor A;

A. ZX(3 .); // Set ZX component of A to 3.

void ZY(const double) ;

Symbolic notation: None Indicial notation: A32+s

sampk?co&:

Tensor A;

A.ZY(3.); // Set ZY component of A to 3.

void ZZ(const double) ;

Symbolic notation: None Indicial notation: ABJ+s

Samplecode:

Tensor A;

A.ZZ(3.); // Set ZZ component of A to 3.

Provide access to components of a tensor through a functional interface. The
functionscorrespondin gtooff-diagonalz termsdo notexist inthe2-Dversion of
the library, since these components always vanish in 2-D finite element codes.

2.2.3 Utility Functions

int fread(Tensor&, FILE*);

int fwrite (const Tensor, FILE*) ;

int fread (Tensor*, int, FILE*) ;

int fwrite (const Tensor?, const int, FILE*);

Sample co&:

Tensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

fread (c, 2, InFile);

31

The PHYSLIB Library

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide aconvenient interface tothefread() and fwriteo
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread () and fwri te () functions.Thus,theyarefriendsratherthanmember
functions,and the integer returned is the number of objects read or written.

2.3 class SymTensor

This class represents symmetric tensors. By providing a separate representation of sym-
metric tensors, we save both memory and computation time, since a symmetric tensor has
fewer independent components. Since symmetric tensor are simply a special case of gen-
eral tensors, they share the same notation and operations.

Symbo!ic notation: A Indicia! notation: Aij

2.3.1 Private Data Members

double xx;

double xy;

double xz;

double yy;

double YZ;

double zz;

xx component of a symmetric tensor (A,1)

xy component of a symmetric tensor (J412= Azl)

xz component of a symmetric tensor (A,3 = A~1)

yy component of a symmetric tensor (Az)

yz component of a symmetric tensor (A23 = An)

zz component of a symmetric tensor (A33)

2.3.2 Special Member Functions

SymTensor (void) ;

Samplecode:

SymTensor a; // Construct an uninitialized

/ / SymTensor.

32

The PHYSLIB Library

Default constructor for instances of the class SymTensor.

SymTensor (const double, const double, const double,

const double, const double, const double) ;

Sumpk code:

SymTensor a(l., 5., 3.,

4 6.,.t

5.);

Construct asymmetric tensor with the given components. The arguments corre-
sTonding tooff-diagonal zcomponents are omitted in the2-D version.

SymTensor (const SymTensor&) ;

Samplecode:

SymTensor a;

SymTensor b = a; // Construct and initialize

ThisisthecopyconstructorforobjectsofclassSymTensor.ltisdefinedmainly

toenhancevectorizationon C3WY computers.

SymTensor& operator= (const SyrnTensor&) ;

Sample code:

SymTensor a, b;

a=b;

This is the assignment operator for objects of class SymTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XX(void) const;

Symbolic notation: 1Af Indicial notation: A,1

Sample code:

33

The PHYSLIB Library

SymTensor A;

print f(’’The XX component of A is %f”, A. XX()) ;

double XY(void) const;

Symboh_cnotation: 2Aj Indicialnotation: Alz

Sample code:

SymTensor A;

printf(’’The XY component of A is %f”, A.XY()) ;

double XZ(void) const;

Symbolicnotation: 3Af Indicial notation: A,3

Sample code:

SymTensor A;

printf(’’The XZ component of A is %f”, A.XZ());

double YY(void) const;

symbolic rwtatwn: 9A J Indiciai notation: AZ

Samplecode:

SymTensor A;

printf(’’The YY component of A is %f”, A.YY());

double YZ(void) const;

Symbo!icnofation:jAi lndiciafnotation:An

Sample code:

SymTensor A;

printf(’’The YZ component of A is %f”, A.YZ());

34

The PHYSLIB Libray

double ZZ (void) const;

Symbolic notation: 2A2 Indicial notation: AJB

samplecode:

SymTensor A;

printf(’’The ZZ component of A is %f”, A.ZZ()) ;

void XX(const double) ;

Symbolic notation: None Indicial notation: A,1 +s

Sampleco&:

SymTensor A;

A.XX(3.); // Set XX component of A to 3.

void XY(const double) ;

Symbo[icnotation: None Indicial notation: A~z+s

Sample code:

SymTensor A;

A.XY(3.); // Set XY component of A to 3.

void XZ(const double) ;

Symbolicnotation: None Indicial notation: A13+s

Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

void YY(const double) ;

Symbolic notation: None Indicial nottltion: Ani-s

Sample code:

35

The PHYSLIB Library

SymTensor A;

A. YY(3 .); // Set YY component of A to 3.

void YZ(const double) ;

Symbolic notution: None Indicialnotution :AZB+S

Sampieco&:

SymTensor A;

A.YZ(3.); // Set YZ component of A to 3.

void ZZ(const double) ;

Symbolic notation :None Indicial notation.: ABBi-s

Sample code:

SymTensor A;

A.ZZ(3.); // Set ZZ component of A to 3.

Provide accessto components ofa symmetrkt ensor through a functional inter-
face. The functions corresponding tooff-diagona] ztermsdo notexist inthe 2-D
version of the library, since these components always vanish in 2-D finite ele-
mentcodes.

2.3S Utility Functions

int fread (SymTensor&, FILE*);

int fwrite (const SymTensor, FILE*) ;

int fread(SyrnTensor*, int, FILE*) ;

int fwrite(const SymTensor*, const int, FILE*) ;

Sample code:

SymTensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

36

The PHYSLIB Librmy

fread (c, 2, InFile);

fwrite (b, OutFile) ;

fwrite (d, 5, OutFile);

These overloads provide aconvenientinterface tothefread() and fwriteo
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread () and fwrite () functions. Thus, they are friends rat-her th~ memk

functions, and the integer returned is the number of objects read or written.

2.4 class AntiTensor

This class represents anti symmetric tensors, By providing a separate representation, we
save quite a lot of memory and computation time. Since antisymmetric tensors are a spe-
cial case of general tensors, the notation and operators are identical.

symbolic notation: A Indicial notation: Aij

2.4.1 Private Data Members

double xy; xy componentofthetensor (A12= -A21)

double xz; xzcomponentofthetensor(A,3= –A31)

double yz; yzcomponentofthetensor (A23= -A32)

2.4.2 Special Member Functions

AntiTensor (void) ;

Samplecode:

AntiTensor A; // Construct an uninitialized

// AntiTensor

DefaultconstructorforkwtancesoftheclassAnt iTens or.

AntiTensor (const double, const double, const double) ;

37

The PHYSLKB Library

Sample co&:

AntiTensor A(-2. , -3. , -l.);

Construct an antisymmetric tensor with the given components. The second and
third arguments are omitted in 3-D.

AntiTensor (const AntiTensor&) ;

Sample code:

AntiTensor a;

AntiTensor b = a; // Construct and initialize

ThisisthecopyconshwctorforobjectsofclassAntiTensor.It is defined mainly
to enhance vectorization on CRAY computers.

AntiTensor& operator= (const AntiTensor&) ;

Sample code:

AntiTensor a, b;

a=b;

This is the assignment operator for objects of class AntiTensor. It is defined
mainly to enhance vectorization on CIWY computers.

Indicia[notation: A,2

double XY (void) const;

symbolic notation: 3Aj

Sample co&:

AntiTensor A;

printf (“The XY component of A is %f”, A. XY());

double XZ (void) const;

symbolic notatwn: 2A? Indiciai notation: AlB

Sample co&:

38

The PHYSLIB Library

AntiTensor A;

print’f (“The X2 component of A is %f”, A. XZ());

double YZ (void) const;

symbolic notation: JA ? Indiciai notation: AZJ

Sample code:

AntiTensor A;

printf(’’The YZ component of A is %f”, A.YZ());

void XY(const double) ;

Symboliciwtution: None Indicial notation: Alz+-s

Sample co&:

AntiTensor A;

A.XY(3.) ; // Set XY component of A to 3.

void XZ(const double) ;

Symbolic notation: None lndicial notation: A1~-s

Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

void Y’z(const double) ;

Symbo[ic notation: Nmw lndiciul notation: Az~-+s

AntiTensor A;

A.YZ(3.); // Set YZ component of A to 3.

39

The PHYSLIB Library

Provide access to components of an antisymmetric tensor through a functional in-
terface. The functions corresponding to off-diagonal z terms do not exist in the 2-
D version of the lihrwy, since these components always wmish in 2-D finite ele-
ment codes.

2.4.3 Utility Functions

int fread (Anti Tensor&, FILE* 1;

int fwrite (const Anti Tensor, FILE*) ;

int fread (AntiTensor*, int, FILE*) ;

int. fwrite (const Anti Tensor*, const int, FILE*) ;

Sample co&:

AntiTensor a, b, c[2], d[5];

FILE* InFile, Out File;

fread (a, InFile) ;

fread (c, 2, InFile);

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

Theseoverloadsprovideaconvenientintefidcetothefreado and fwriteo

Iibraryfunctionsforbinaryinput/output.

The,sefunctions were written to be as consistent as possible with thestanclarci
freado and fwriteo functions.Thus,theyarefriendsratherthanmember
functions,andthektegerreturnedisthenumber ofobjectsreadorwritten.

40

The PHYSLIB Library

2.5 operator overload Functions

Vector operator -(void) const;

Synlbc]lictlotuti(Jt~: –i Indickrl notation: –(l,

‘iector a, b;

a= -b ;

Return the opposite of a vector.

Tensor operator- (void) const;

.9JrmTensor operator- (void) const;

Ant.iTensor operator– (void) const;

,TynllJt]!icnotation.: -A Indicial twtution: –Aij

Somple code:

Tensor A, B;

A = -B;

Returntheoppositeofatensor.

Vector operator* (const Vector, const double) ;

Vector operator* (const double, const Vector) ;

Syrnbolicnotation :21: Indiciul notation: UiC

Sumplerode:

Vector a, b;

double c;

a =b * c;

Return theproduct ofascalarancla vector. 1’hisoperation commutes (ascan bc
seen from itsindicial representation) butC++makes no assumptions aboutcom-
mutivity of operations; hence. both orderings must be defined. C++ does assume

The PHYSLIB Library

the usual rules of associativity for overloaded operators (thus a* b * c means

(a*b) *cor (i).~)~).

Vector& operator*= (const double) ;

Symbolic notation: h + 2C Indicial notation: ai e ait

Sample code:

Vector a;

double c;

a *= c;

Replaceavectorby itsproductwithascalar.

Vector operator/ (const Vector, const double) ;

Symbolic notation: ii/c Indicial notation: ai/c

Sample co&:

Vector a, b;

double c;

a = b/c;

Return the quotient of a vector with a scalar. The case c = O results in a divide-
by-zero error, which is handled differently on different computers.

Vector& operator /=(const double) ;

Symbolic notution: 2 + Z/c Indicial notation: Ui6 ai/c

Sample code:

Vector a;

double c;

a /= c;

Replacea vectorby itsquotientwitha scalar.The casec = O resultsina dhMe-

by-zero error, which is handled differently on different computers.

42

The PHYSLI13 Library

double operator* (const Vector, const Vector) ;

Symbolic ~wtution: ;*; Indiciul notution: Uihi

Sumple code:

Vector a, b;

double c;

c=a * b;

Returnthedotorinnerproductoftwo vectors.

Tensor operator%(const Vector, const Vector) ;

Symbolic notation :~@~ Indicia! notation: uibj

Sample code:

Vector a, b;

Tensor c;

c = a %b;

Returnthe tensor orouterproductof twovectors. The operator ’%’represen ~sthe
modulo operation when applied to integers. It was selected to represent theouter

productofvectorsbecausethecompilerassignsitthesame precedenceasmulti-

plication.

Vector operator+ (const Vector, const Vector) ;

Symbolic tmtution: ;+; ftufkitd notation: ai + bi

Sample code:

Vector a, b, c;

a= b+c;

Return the sum of two vectors.

43

The PHYSLIB Library

Vector& opera hor+=(const Vectorj ;

Symbolic notation: A+-;+L Indici(ll notation: ai +- ai + hi

Stlmple txx.k:

Vector a, b;

a += b;

Replacea vector by its sum with i.mother vector.

Vector operator–(const Vertor, ronst VeclIC:r!;

,Yymbolicrwtation: 2-; [ndicitil notation: Ui– bi

Sample code:

Vector a, b, c;

a= b–c;

Returnthedifferenceoftwo vectors.

Vector& operator -=(const. Vector) ;

Symbolic notation: h G L - ~ In.dicid n.otution: Ui.+ ai – bi

Sample code:

Vector a, b;

a —= b;

Replace a vector by its difference with a vector.

Tensor operator’ (const Tensor, const double) ;

SymTensor operator* (const SymTer Lsor, const double) ;

AntiTensor operator* (const AntiTer,sor, const double) ;

Tensor operat-ol-*(const chubie, cons~. Terls:~l);

SymTensor operator* (c~nsL double, const SymTensorj ;

AIIti’T’eIISC)r o~eI”iltor*(c!onst doII]jle,can~t ~nt..~’ren~or);

44

The PHYSUB Library

Symbolic notation: A c Indiciai notation: AijC

Sample co&:

Tensor A, B;

double c;

B= A*c;

Returntheproductof a tensor with a scalar.

Tensor& operator* =(const double) ;

SyrnTensor& operator’=(const double);

AntiTensor& operator*=(const double);

Symboiic notation: Ai-Ac Indiciai ?wtation: Aij+ Aijc

Sample code:

Tensor A;

double c;

A *= c;

Replacea tensorby itsproductwitha scalar,

Tensor operator/(const Tensor, const double) ;

SymTensor operator/(const SyrnTensor, const double);

AntiTensor operator/(const AntiTensor, const double) ;

Symbolic notation: A/c Indicialnotation: A1j/c

Sampleco&:

Tensor A, B;

double c;

B = A/c;

Retumthe quotientofatensorwithascalar.Thecasec =Oresultsinaclivicle-

by-zeroerror,whichishandleddifferentlybydifferentcomputers.

45

The PHYSLI13 Library

Tensor operator/ =(const double) ;

SymTensor& operator/ =(const double) ;

AntiTensor& operator/=(const double) ;

Symbolic notation: Ai-A/c Indiciainotation: Aij&Aij/c

Sampiecode:

Tensor A;

double c;

A /= C;

Replaceatensorby itsquotientwithascalar.The casec= oresultsinaclivide-

by-zero error, which is handled differently by different computers.

Vector operator* (const Tensor, const Vector) ;

Vector operator* (const AntiTensor, const Vector) ;

Vector operator* (const SymTensor, const Vector) ;

Symbo[icnotution: A; lndicial notation: Aijbj

Sample code:

Tensor A;

Vector b, c;

c=A*b;

Return the result of left-multiplying avectorby a tensor. There are three cases,
corresponding to the three varieties of tensor implemented in PHYSLIB; all are
identical innovation and usage, however.

Vector operator* (const Vector, const Tensor) ;

Vector operator* (const Vector, const AntiTensor) ;

Vector operator* (const Vector, const SymTens,or) ;

Symboiic notation: iB I#ldit’iai tlotatitJrl:ajBji

Sample co&:

46

The PHYSLIB Library

Vector a;

Tensor b, c;

c=a ‘ b;

Returntheresultofright-multiplyinga vectorby atensor,

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator* (const

Tensor operator*(const

Tensor operator* (const

Symbolicnotution :AB

Samplecode:

Tensor A, B, C;

C =A * B;

Tensor, const Tensor) ;

SymTensor, const Tensor) ;

Tensor, const SymTensor) ;

SymTensor, const SymTensor) ;

AntiTensor, const Tensor) ;

Tensor, const AntiTensor) ;

AntiTensor, const SymTensor) ;

SymTensor, const AntiTensor) ;

Indicial twtation: AijBjk

Return theproduct ofatensor witha tensor.

Tensor operator+(const Tensor, const Tensor) ;

Tensor operator+(const SymTensor, const Tensor) ;

Tensor operator+(const Tensor, const ,SymTensor) ;

SyrnTensor operator+(const SymTensor, const SymTensor);

Tensor operator+(const AntiTensor, const Tensor) ;

Tensor operator+(const Tensor, const AntiTensor) ;

Tensor operator+(const AntiTensor, const SymTensor) ;

Tensor operator+(const SymTensor, const AntiTensor) ;

AntiTensor operator+ (const AntiTensor, const AntiTen-

sor) ;

47

The PHYSLI13 Library

Symbolic notation: A + B !ndicid notation: Aij + Bij

Sample code:

Tensor A, B, C;

C= A+B;

Returnthesum of two tensors.

Tensor& operator+= (const Tensor) ;

Tensor& operator+ .(const SymTensor) ;

SymTensor& operator+=(const SymTensor) ;

Tensor& operator+=(const AntiTensor) ;

AntiTensor& operator+=(const AntiTensor);

Symbolic notation :Ai-A+B]ruficiaf notution: Aij + Ail+ Bij

Sarnplf?code:

Tensor A, B;

A += B;

Replaceatensorby itssum withanothertensor.

Tensor operator–(const Tensor, const Tensor) ;

Tensor operator- (const SymTensor, const Tensor) ;

Tensor operator- (const Tensor, const SymTensor) ;

SymTensor operator-(const SymTensor, const. ~ymTen:~or) ;

Tensor operator-(const AntiTensor, const ‘[(”l”lSOr) ;

Tensor operator- (const Tensor, :;onst AntiTensor);

Tensor Operator-(const AntiTcnsor, const SymTensou) ;

Tensor operator-(const SymTensor, COP.SK. A~:l:~T~l~.:.~l);

AntiTensor operator– (const lWtiTe~i:;or, const Ant.iTen-

sor) ;

Symbolienotation :A-B indicial notation: A,j - Ilij

The PHYSLIB Library

Sampk code:

Tensor A, B, C;

C= A-B;

Returnthedifferenceoftwo tensors,

Tensor& operator- =(const Tensor) ;

Tensor& operator-=(const SymTensor) ;

SymTensor& operator-=(const SymTensor) ;

Tensor& operator-=(const AntiTensor);

AntiTensor& operator-=(const AntiTensor);

Symbolic notation: A~A -B Indicia~notation: Aij+Aij-Bij

Sampkc ode:

Tensor A, B;

A -= B;

Replaceatensorbyitsdifferencewithanothertensor.

49

The PHYSLI13 Library

2.6 Methods

Vector Cross (const Vector, const Vector) ;

Symbolic notation: h x; Indicial notation: cijkajbk

Sample code:

Vector a, b, c;

c = Cross (a, b);

Vector or cross product of two vectors. The symbol Eijk is the permutation sym-

bol, which is O if any of the i, j, or k are equal, 1 if they are an even permutation
of the sequence 1, 2, 3, and -1 if they are an odd permutation of the sequence 1, 2,
3. For example, &lzz= O; E123 = 1; and E213 = –1. The cross product is distributive

and associative but not commutative.

Vector Dual (const Tensor) ;

symbolicnotation: Dual (A) Indicia[notation: EijkAjk

Sample co&:

Tensor A;

Vector b;

b = Dual(A) ;

Any tensorA can be split into a symmetric part ~ (A + AT) and an antisymmelric

part ~(A-AT). The dual of a tensor is a vector which depends uniquely on its

antisymrnetric part,

AntiTensor Dual

Symbolic notation:

Sample code:

Vector a;

(const Vector) ;

Dual(~) Indicial notation: Eijk;k

AntiTensor B;

B = Dual(a) ;

50

The PHYSLI13 Library

Dual of a vector. It can be proved that DuaI(Dual(ti)) = Z?, The concept of the dual

is closely related to the cross product, since ~Dual(2) = ii x ~.

double Norm (const. Vector) ;

Symlmlic notation: 161 Indicial notation: %

Sample code:

Vector a;

double b;

b = Nor?n(a);

Returns the magnitude or norm of a vector. This is calculated as the square root
of the dot product of the vector with itself.

double Norm(const Tensor) ;

double Norm(const SymTensor) ;

double Norm(const Anti Tensor) ;

symbolicnotation: 1AI Indicial flotation: G

Sample code:

Tensor A;

double c;

c = Norm(A) ;

Returns the norm of a tensor. This is calculated as the square root of the scalar
product of the tensor with itself.

double DeL (const Tensor) ;

double Det (const SymTensor) ;

Symbolic notution: da [A] Indiciul notation: ~ E E
6 ij~ ‘m”

AilAjmAk,,

Sample code:

Tensor A;

51

The PHYSLIB Library

double c;

c = Det (A);

Determinantofatensor.[tisalwayszeroforanantisymmetrictensor.

Tensor Inverse (const Tensor) ;

SymTensor Inverse (const SymTensor) ;

Symboiic notation: A-l

!hn@e code:

Tensor A, B;

B = Inverse(A);

inverseof a tensor. If the tensor is singular, a divide-by-zero error will result
(which may be ignored on machines using the IEEE floating point standard). An-
tisymmetric tensors are always singular.

double Tr (const Tensor) ;

double Tr(const SymTensor) ;

Symbolic notution: TrA Indiciul notution: Akk

Sample code:

Tensor A;

double c;

c = Tr (A);

Trace of a tensor. The trace of an antisymmetrk tensor is always zero.

Tensor Trans(const Tensor) ;

Symboiic notation: AT Indicia! mmltion: Ajk

Sumple code:

Tensor A, B;

B = Trans (A);

52

The PHYSLIB Library

Transpose of a tensor. By definition, the transpose of a symmetric tensor is the
tensor, while the transpose of an antisymmetric tensor is the opposite of the tc.n-
sor.

SymTensor Sym(const Tensor) ;

SymbolicIwt<itl”on: $ (A + A‘) fn.diciu[notalion: ~ (Aij + Aji)

Sampk code:

Tensor A, B;

B = Sym(A) ;

Symmetric part of a tensor.

AntiTensor Anti.

Symbolic notation:

Sample code:

(c!onst Tensor) ;

~ (A - AT)]ndicid notution: ~ (Aij - Aji)

Tensor A, B;

B = Anti(A) ;

Antisytnmetricpartofa tensor.

double Colon (const

double Colon (const

double Colon (const

double Colon (corlst

double Colon (const

double Colon (const.

double Colon (const

Symbolic notation: A: B

Su??tph’cod?:

Tensor, const Tensor) ;

Tensor, const SyrnTensor) ;

SymTensor, const Tensor) ;

SyrnTensor, const SymTensor) ;

Tensor, const AntiTensor) ;

Ant.iTensor, const Tensor) ;

Ant iTensor, const AntiTensor) ;

fndiciuf n.otution: AijBij

53

The PHYSLU3 Library

Tensor A, B;

double c;

c = Colon (A, B);

Innerorscakuproductoftwo tensor,also written Tr(A~B). The scalar product of
asymmetric and an antisymmetric tensor is always zero.

Tensor Deviator(const Tensor) ;

SymTensor Deviator(const SymTensor) ;

Symbolic notation: A-~Tr(A)l Indiciui notation: Aij-~Akk6ii

Sampkcode:

Tensor A, B;

B = Deviator(A);

Deviatoricpartofatensor.Thetensor1 istheidentityknsor,whichistheunique

tensorthattransformsany vector into itself and whose components are represent-
ed by the Kronecker delta tiij. The deviator of an antisymrnetric tensor is the ten-

sor itself.

double It (const Tensor&) ;

double It (const SymTensor&) ;

double It (const AntiTensor&) ;

Symbolic notation: 1, = Tr(A) Indicial notation: Akk

Sample code:

Tensor A;

double c;

C = It(A);

double IIt(const Tensor&) ;

double IIt(const SyrnTensor&) ;

double IIt(const AntiTensor&) ;

54

The PHYSLIB Library

Symbofic notation: II, = ~ (1A 12- (TrA)‘) IndiciU/ WatiOn: ~ (Ai#ij - (AJ 2,

S(mlple(“(xii’:

Tensor A;

double c;

C = IIt (A);

double IIIt(const Tensor&) ;

double IIIt(const SymTensor&) ;

double IIIt(const AntiTensor&);

Symbolic notation: ~1, = DetA Indicial notation: &ijkE,mnAilAjmAk~

Sample code:

Tensor A;

double c;

c= IIIL(A) ;

Scalarinvariantsofatensor.Thesearethecoefficientsappearinginthecharac-

teristicequationofatensor,They aretheonlythreeindependentscalarsthatcan

beformedina frame-independentmanner from a single tensor; all other scalars
that can be formed from a tensor are functions of the scalar invariants.

The first invariant is a synonym for the mace; the third is a synonym for the deter-
minant. Only the second invariant is nonzero for an antisymmetric tensor.

The characteristic equation itself takes the form

L3– I, A2– II IX-111, = L1 (29)

and its roots are the principal values of the tensor.

Tensor Eigen (const SymTensor, Vector&) ;

This function returns the orthonormal tensor whose columns are the eigenvectors
of the given symmetric matrix. The principal values are placed in the vectorspec-

ifiedby the second argument. Thus, if

A = Eigen(B, Ci) (30)

55

The PHYSLI13 Library

then

D = ATBA (31)

is a diagonal tensor whose elements are given by the vector ei.

2.7 Predefine Constants

const int DIMENSION = 3 ;

This is an integer constant giving the dimensionality of the library. It is defined to
be equal to 2 if the 2-D version of the library is being used.

extern const Vector ZeroVector;

extern const Tensor ZeroTensor;

extern const Anti Tensor ZeroAntiTensor;

extern const SymTensor ZeroSymTensor;

These are objects of the various classes whose components are all zero.

extern const Tensor Identity Tensor;

extern const SymTensor IdentitySymTensor;

Theseareobjects ofthegivenclasses correspondingto the identity tensor, which
is the tensor that transforms anyvector into itself. Theoff-diagonal components
are zero and the diagonal components are equal to one in any coordinate system.
The identity tensor is symmetric and is given in both symmetric and full tensor
representations.

56

The PHYSLIB Library

(This page intentionally left blank)

.57

The PHYSLIB Library

58

Using the PHYSLIB classes

3. Using the PHYSLIB classes

The classes defined in PHYSLIB are essentially new arithmetic types analogous to the
predefine int, float, and double types. Their use is illustrated by the program
fmgrnent below:

#include “physlib. h” // The example is 3-D

/*...*/

const Tensor One (l., O., 0.,

0 1., 0.,.1

0 0., l.);.1

Tensor GradVel; // Velocity gradient

SymTensor Deformation, deformation, Stretch, Stress;

AntiTensor W, Omega;

Vector omega;

/* . . . */

Deformation = Sym(GradVel);

W = Anti(GradVel);

/’ Integrate rotation and stretch tensors ‘/

omega = 2. *Inverse (Tr(Stretch) *One - Stretch) *

Dual (GradVel*Stretch) ;

Omega = 0.5*Dual(omega) ;

Rotation . Inverse(One - 0.5*delT*Omega) *(One +

59

Using the PHYSLIB classes

O . 5*delT*Omega) ‘Rotation;

Stretch +=

/’ Calculate
stress *I

Sym(delT’ (GradVel*Stretch-Stretch*Omega)) ;

unrotated deformation and determine rotated

deformation = Sym(Trans (Rotation) *Deformation*

Rotation) ;

Stress = Sym(Rotation *

ComputeStress (deformation, delT) *

Thisparticularprogramfragmentistakenfromtheintemal

Trans(Rotation)) ;

forcesroutineinRHALE#.

Thevelocity gradient isdecomposed into itsrotation and stretch rate components, thero-
tationandstretch areupdatedtothe newtirne,andthe deformation rate isrotatedtothe
material configuration for the calculation of the new stress (which isdonein the user-de-
fined routine SymTensor ComputeStress (SymTensor&, double)).The new

stressisthen rotated back to the laboratory configuration.

3.1 Useless Operations

Certainoperations are mathematically well-defined but useless. For example, the n-ace or
the detenni.nant of an antisymmetic tensor is well-defined but trivially zero. The trans-
pose of a symmetric tensor is itself. These operations are not explicitly defined in
PHYSLIB, but if the programmer were to write code such as

Antitensor a;

double b;

/* . . . */

b = Tr(a);

thecodewouldcompileandrunnormally.The compilerrecognizesthatthereisastandard

conversionfromAnt iTensor toTensor. Thisconversionk calledfora andtheresult

ispassedtoTr (Tensor), whichreturnsthecorrectvalueofO.

Obviously,programmersshouldavoidsuchuselessconstructs,sincetheyneedlesslycon-
sume time and memory. Some users may wish to comment out the standard conversions
responsible for permitting useless code.

60

Conclusion

PHYSLIB defines vector and tensor classes that are fundamental to the RHALE++ pro-
gramming effort, but which are general and should be useful in many scientific applica-
tions.

These classes are fundamental components of field classes that represent vector and tensor
fields ot’ various types relevant to finite element calculations. These are essentially smart
arrays of vectors or tensors with corresponding operations and methods. The arrays are de-
fined on a domain represented by a mesh class. Calculus operations such as divergence or
gradient are defined in these libraries.

These field classes which utilize the PHYSLIB classes are the subject of a future docu-
men t.

61

(This page intentionally left blank)

62

References

[1] M. A.Ellis and B. Stroustrup, The Annotated C+ + R@ret~ce Manuf~l. 1990. Reading,
MA: Acldison-Wesley Publishing Company.

[2] L.E.Malvern, Intt-oduczion to the Mechanics ofa Cotltinuous Medium, 1969. Engle-
woociCliffs,NJ:Prentice-Hall,Inc.

63

(Thispageintentionallyleftblank)

64

Index of Operators and Functions

A
AntiTensor Anti(const Tensor) 53
AntiTensor Dual(const Vector) 50
AntiTensor operator-(const AntiTensor, const AntiTensor) 48
AntiTensor operator-(void) 41
AntiTensor oper~tor*(cunst AntiTensor, const double) 44
AntiTensor operator* (const double, const AntiTensor) 44
AntiTensor operator+ (,const AntiTensor, const AntiTensor) 47
AntiTensor operator/(const AntiTensor, const double) 45
AntiTensor& operator* =(const double) 45
AntiTcnsor& operator+= (const AntiTensor) 48
AntiTe.nsol-& oper~tor/=(const double) 46
AntiTensor& operator= (const AntiTensor&) 3K
AntiTensor& operator-= (const AntiTensor) 49
AntiTensor(const ,4ntiTensor&) 38
AntiTensor(const double, const double, const double) 37
AntiTensor(voici) 37

D
doubleColon(constAntiTensor,constAntiTensor)53
doubleC’olon(constSymTenscn-,consrSymTensor)53
double Colon(const Tensor, const Tensor) 53
double Det(consl SymTensor) 51
double Det(const Tensor) 51
double Illt(const AntiTensor&) 55
double lIIt(const SymTensor&) 55
double IIlt(const Tensor&) 55
double Ilt(const AntiTensor&) 54
double Ilt(.const SynlTensor&) 54
double Ht(const Tensor&) 54
double [t(const AntiTensor&) 54
double It(const SymTensor&) 54
doub[e It(const Tensor&) 54
double Norm(const Vector) 51
double opcrutor*(ccmst Vector. const Vector) 43
double T1-(const SymTensor) 52
double “rr(const Tensor) 52

double X(void) 22

double XX(void) 27.33
double XY(const double) 39
double XY(,void) 27,34, 3’?
double XZ(cxmst double) 39
double XZ(voicl) 28,34,38
double Y(voici) 23
double YX(void) 28
double YY(void’) 28,34

65

double YZ(const double) 39
double YZ(void) 28,34,39
double Z(void) 23
double ZX(void) 28
double ZY(void) 29
double ZZ(void) 29,35

I
int fread(AntiTensor&, FILE*) 40
int fread(AntiTensor*, int, FILE*) 40
int fre~d(SymTensor&, FILE*) 36
int fread(SymTensor*, int, FILE*) 36
int fread(Tensor&, FILE*) 31
int fread(Tensor*, int, FILE*) 31
int fread(Vector&, FILE*) 24
int fretidI(Vector*, int, FILE*) 24
int fwrite(const AntiTensor*, const int, FILE*) 40
int fwrite(const AntiTensor, FILE*) 40
int fwrite(const SymTensor*, const int, FILE*) 36
int fwrite(const SytnTensor, FILE*) 36
int fwrite(const Tensor*, const int, FILE*) 31
int fwrite(const Tensor, FILE*) 31
int fwrite(const Vector*, const int, FILE*) 24
int fwrite(const Vector, FILE*) 24

s
SymTensor Deviator(const SymTensor) 54
SymTensor Inverse(const SymTensor) 52
SymTensor operator-(const SymTensor, const SymTensor) 48
SymTensor operator-(voicf) 41
SymTensor operator* (const double, const SymTensor) 44
SymTensor operator* (const SymTensor, const double) 44
SymTensor operator+ (const SymTensor, const SymTensor) 47
SymTensor operator+=(const SymTensor) 48
SymTensor operator/(const SymTensor, const double) 45
SymTensor Sym(const Tensor) 53
SytnTensor& operator*=(const double) 45
SytnTensor& operator/= (const double) 46
SymTensor& operator= (const SymTensor&) 33
SymTensor& operator-=(const SymTensor) 49
SymTensor(const double, const double, .,. , const double) 33

SymTensor(const SymTensor&) 33
SymTensor(void) 32

T
Tensor Deviator(const Tensor) 54
Tensor Eigen(const SymTensor, Vector&) 55
Tensor Inverse(const Tensor) 52
Tensor operator% (const Vector, const Vector) 43
Tensor operator-(const AntiTensor, const SymTensor) 48

Tensor operator-(const AntiTensor, const Tensor) 48
Tensor operator-(const SymTensor, const AntiTensor) 48
Tensor operator-(const SymTensor, const Tensor) 48
Tensor (>perator-(collst Tensor, co[lst AntiTellsor) 48
Tensor operator-(const Tensor, const SymTensor) 48
Tensor operi.itor-(const Tensor, const Tensor) 48
Tensor operator-(void) 41
Tensor operator*(const AntiTensor, const SymTensor)47
Tensor operator*(const AntiTensor, const Tensor)47
Tensor operator*(const double, constTensor) 44
Tensor operator*(const SymTensor, const AntiTensor)47
Tensor operator* (const SymTensor, const SymTensor) 47
Tensor operator* (const SymTensor, const Tensor) 47
Tensor operator* (const Tensor, const AntiTensor) 47
Tensor operator* (const Tensor, uonst double) 44
Tensor operator*(const Tensor, const SymTensor) 47
Tensor operator*(const Tensor, const Tensor) 47
Tensor operator+(const AntiTensor, const SymTensor) 47
Tensor operator+(const AntiTensor, const Tensor)47
Tensor operator+(const SymTensor, const AntiTensor)47
Tensor operator+(const S~mTensor, const Tensor)
Tensor operator+(const Tensor, const AntiTensor)
Tensor operator+(const Tensor, const SymTensor)
Tensor operator+(const Tensor, constTensor) 47
Tensoroperator/(const Tensor, constciouble) 45

47
47
47

Tensor operator/=(const double) 46
Tensor Trans(const Tensor) 52
Tensor& operator* =(const double) 45
Tensor& operator+= (const AntiTensor)
Tensor& operator+= (const SymTensor)
Tensor& operator+=(const Tensor) 48

48
48

Tensor& operator-= (const AntiTensor) 49
Tensor& operator= (const AntiTensor) 27
Tensor& operator-= (const SymTensor) 49
Tensor& operator=(const SymTensor) 27
Tensor& operator=(const Tensor&) 26
Tensor& operator-= (const Tensor) 49
Tensor(const AntiTensor) 26

Tensor(const double, const double, const double) 25
Tensor(const SymTensor) 26
Tensor(const Tensor&) 26
Tensor(void) 25

v
Vector Cross(const Vector, const Vector) 50
Vector Dual(const Tensor) 50
Vector operator-(const Vector, const Vector) 44
Vector operator-(void) 41
Vector operator* (const AntiTensor, const Vector) 46
Vector operator* (constdouble, const Vector) 41

67

Vector operator* (const SymTensor, const Vector) 46
Vector operator* (const Tensor, const Vector) 46
Vector operator* (const Vector, const AntiTensor) 46
Vector operator* (const Vector, const double) 41
Vector operator* (const Vector, const SymTensor) 46
Vector operator* (const Vector, const Tensor) 46
Vector operator+ (const Vector, const Vector) 43
Vector operator/(const Vector, const double) 42
Vector& operator”= (const double) 42
Vector& operator+=(const Vector) 44
Vector& operator/=(const double) 42
Vector& operator= (const Vector&) 22
Vector& operator-= (const Vector) 44
Vector(const double, constdouble, constdouble) 22
Vector(const Vector&) 22
Vector(void) 22
void XX(const double) 29,35
void XY(const double) 29,35
void XZ(const double) 30,35
void YX(const double) 30
void YY(const double) 30,35
void YZ(const double) 30,36
void Z(const double) 24
void ZX(const double) 30
void ZY(const double) 31
void ZZ(const double) 31, 36

x
X(const double) 23

Y
Y(const double)23

z
Z(void) 22

68

Distribution

1. External Distribution

R. W. Alcwinc
DARPA/RMCI
140(J Wils~ln Blvd.
Arlingtun. VA 22209

R. T. .Alkn

Pacilic:l Tccllnt~kJw
P.o. llox 14s
Del Mar,CA 9’2[)14

M. .~hllC

Logictm RDA
21(rn)W:Ishingt(m Blvd.
Arlington. VA 22204-57(M

Anntech lnlcrn;~tion:d Cmpor:llim (2)
A[[n: R. S. Dunh:un

R. F,. !’4ick~ll
Jw Rnshid

3344 N. Ttwrcy Pines Ct.

Suite 320
Lt Jolla, CA 92037

Jmws C. AIIIWIKI

Directm
(’enkr I(w IIigh Pcrl”ornlanL’c Ctmputing

klmws Rcsc:wh Cmkr
101(M)N. BurnciRoad
Auslin,TX 7S758-44°7

D. M. Austin
Army High Puf, C(mrp. RCSCII.Cntl’.
University Of Minnesut:i
1300”S. Sccmd S[.
Minnu;~polis, MN 5541<

Willi:un E. Bxhmh
Acroje[Rcsezrch Prq]ulsi(~n Inslilutc
P.0, Box 13502
Sacrarncnto, CA 95853-4502

F. R,lltilty
MS2(N)-4

I)imMr. kmpl]ysi~s
NASA Amc.s Rcsmrch Center

Mtife(t fidd. CA 94(35

()(!

Ken Bannister

US Army Ballistic Research Laboratory
SLCBR-IB-M
Aberdeen Proving Grounds, MD 21005-5066

W. Beck

AT&T Pixel Machines, 4J-214

Crawfords Comer Road
Hormtd, NJ 07733-1988

T. Belytschko
Dep,artmcnt of Civil Engineering
Northwestern University
Evanston, IL 60201

M, R. Berg
Organization 62-30
Building 150

Lockheed
1111 Lockheed Way

Sunnyvale, CA 94089-3504

B. W. Boehm
DARPA/lSTO
1400 Wilson Blvd.
Arlington, VA 22209

D. Br,and
MS N893(J
Gecdynarnics
Falcon AFB, CO 80912-5000

Lwry Brown
Instmmen~ition Development
Denver Research Institute
IJnivcrsity P,ark
Dtmvm. CO 80208”

John Brunet
245 First Street
C’arnbriclgq MA 02142

B.L. Buzke

Scientific Computing Department

NCAR
P.O. BOX 3[M)0
Boulder, CO 80307

Gene Carden
LJniversily of Al:dxuna
PO Box 870278
TUSCdO(X& AL 35487-0278

Art Carlson

Naval Ocean Systems Center
Code 41
New London, CT 06320

Bonnie C. Carroll, Sec. Dir.

CEND1

Information Intematiomd
P.O. Boix 4141
Oak Ridge, TN 37831

J.M.Cnwdlini, Act. Dir.
Scientific Computing Sktif
Office of Energy Research
U.S. Department of Energy

Washington, DC 20545

John Champine

University and Government R&D Prog. Mgr.
Softw:ue Division
Cray Research Inc.
fi55F Lone Oak Dr.
Eagan, MN55121

T. F. Chan

Mathematics Department
University of California at Los Angeles
405 Hilgard Avenue
Los Angeles, CA 90024

J, Chandra
Army Research Ofilce
P.O. Box 12211
Rewarch Tri,angk Park, NC 27709

Chuck Charman

GA Technologies
P.0, Box 81608
San Diego, CA 92138

Wwmn C’hem(~k
Scientific Advisor
DP- 1

U.S. Department of Energy

Forrestd Building4A-045
Washington,DC 20585

Ken K. Chipley
Martin Marietta Energy Systems
P.O. Box 2009
O:k Ridge, TN 37831-8053

70

Km P. Chong

Department of Civil Engineering

LJniversity of Wyoming
Laramie. WY X2071

Yong-il Clot)

Orgmimtion81 -12
Building 157
Lockheed Company
1111 Lockheed way
Sunnyvale, CA 94088-3504

S. C. Chou
U.S. Ann y M:iteri:ds Technology Laboratory

SLCMT-BM
Watertown, MA 02172-0001

Tien S. Chou
EG&G Mound
P.O. Box 3000
Miamisburg, OH 45343

Eric Chris[i:msen

NASA Johnson Sp:lcc Center
Space Scicncc Br:mch/SN3
Houston, TX 77(I5X

M, Ciment, Deputy Dir.
Advanced Scientific Computation Div.
RM417
National Science Foumkition
Washington, DC 20550”

Dwight Clark
Morton Thiokol Corporation
P.O. BOX 524

Mail Stop 281
Brighwn City, UT 84302

Richard Claytor, Asst. Secty.

Defense Programs, DE-1

Forrcstal Building 4A-()14

U.S. Deparlmcnt O(Energy
W:~$hington, DC 20550”

T. Cole

MS 180-500
Chicl Technologist, Oft. of Tech. Div.

Jet Propulsion L.dxmlory
48(N) Oak Grtwc Dr.

Pwtden;t.CA911 09

T. F. Colenmn

Computer Science Department
Cornell University
Ithaca, NY 14853

s. Coney
NCUBE
19A D:lvis Drive

Belmont, CA 94002

Gerald Collingwood
Morton Thioko] Corporation

Huntsville, AL 35807

John Collins
U.S. Air Force Armament Laboratory
Computational Mcchxnics Branch
Eglin AFJ3, FL 32542-5434

C. H. Conley
School of Civil and Environmental Engineering
Hollister Hall
Corrwll University
Ithwa. NY 14853

D:~vid L. Conover

Swanson Analysis Systems Inc.
Johnson Road, P.O. Box 65
Houston, PA 15342-0065

J. Corones
Ames L:~boratory
236 Wilhelm Hdl
Iowa State University
Ames, IA 50011-3020

Ms. C. L. Crothers
IBM Corporation
]472 Wheelers Farms Road
Milford, CT 06460

J. K. CUl]um
Thom:N J. Watson Rcse:trch Center
P.o.Box218
Yorktown HeighLs, NY 10598

lim Cullis
XTZ Division
Royal Arnmnmt R&D Establishment
Fort H:dstwld

Stweno,aks, Kent
United Kingdom

71

Rich;ud E, D,anell
Rcsc;wch Officer

Ccn(ral Rcse,arch Lnboralories
BHP Research & Ncw Technology
P,O. Box 188
Wallscnd NSW 2287

Austmlia

L. Davis
Executive Vice President

Cray Research Inc.
1168 Industrial Blvd.
Chippawa Falls, WI 54729

DARPA/DSO (2)
AtIn: L. Auskmdcr

H,L. Buchamm
1400 Wilson Blvd.
Arlington, VA 22209

Defense Advanced Research Projects Agency (3)
Attn: Lt. Col. Joseph Beno

T. Kiehne
J. Richardson

1500 Wilson Boulevard
Arlington, VA 22209-2308

Mr. Frank R. Deis
M,artin Marietta
Falcon AFB, CO 80912-5000

R. A. DcMillo
Director, Comp. & Colnput. Resch.
Rm. 304
Na[ion;d Science Foumkltion
Washington, DC 20550

L, Deng
Applied Mathematics Department

SUNY at Stony Brwk
Slcmy Brook, NY 11794-3600

A, Trcnl DcPcrstit

Program N4miger

DARPA/ASTO
1400 Wilson Blvd.

Arlington, VA 22209-2308

Ramji Digumarthi
Org. 8111. Bldg. 157
Lockhed MSD
P.O. Box 3504
Sunnyvale, CA 94088-3504

J. Dwdl Dixon

Spokmw Research Center
US. Bureau of Mines
315 Montgomery Avenue

Spokane, WA 99207

J.J. Dong.ama
Computer Scicncc Department
104 Ayres Hall
University of’Tenncsscc
Knoxville, TN 37996-1301

L. DOWdy

Computer Science Department
Vanderbilt University
Nwhville, TN 37235

1. S, Duff
CSS Division

Harwell Laboratory
Ox[ordshiw, OX11 ORA

United Kingdom

S. C. Eisenstat
Computer Science Dep,artmcnt
Yale University
P.O. BOX 2158
New Haven. CT 06520

H. Ehnan
Computer Science Department
University of M,wyland
College Park, MD 20842

Julius W. Enig
Enig Associates, Inc.

11120 New Hampshire Ave.

Suite 500
Silver Spring, MD 20904-2633

J. N. En(zminger

DARPA[rTO
1400 Wilson Blvd.

Arlington. VA 22209

A. M. Erisman

MS7L-21
Boeing Computer Services
P.O. BOX 24346
Seattle, WA 98124-0346

J. Glirnm
Dcpf. (11Aplllid hl;i[h~’nullics
S[ntc l!niversily t)t’NCW Yljrk A[S{~my ~r(~,~k
stony13nl(kNY 117°’1-3600”

J. ~USClfSOll

(hnpu(cr Scicmx Dqmrmcnt
~~6 Wilhc]m Hall
[own Sl;il~’[Jnivmily
Alll(’s, M 5(K)I 1

Dr. Jmx P. Wldy
NTf31(’/GEODYNAfvflCS
MS NH930
Falcon AFB, CO 8(Y)12-5000”

Brent Henrich

Mobife R&D Laboratory
13777 Midway Rd.

P.O. Box 819047
DaflM, TX 75244-4312

S[cvc Hcrrick
Textron Defense Systems

Mail stop I115
201 Lowell St.
Wihninglon, MA 01887

Hibbitt, Karlsson & Sorensen, Inc. (5)
Attn: David Hibbitt

Joop Nagtegaal
D.P. Flanagan
L.M. Taylor
W.C. Mills-Curr,an

100 Medway St.
Providence. RI 02906

Scott Hill
NASA Marshall Space Flight Center
Mail Code ED52
Redstone Arsenal
Huntsville, AL 35812

W, D, Hillis
Thinking Machines, Inc.
245 First St.
Cambridge, MA 02139

Emil Hinrichs
Manager, Computer Center
GecmPrakliI
Bucholzcr Stral.ie 100
P.O. Box 5105 3(I

D-NW() Hanrrover51
Germany

L’1’C’Ricllml Hochbewrg

SDIC)/SDA

The Pentagon
W:ishington, DC 20301-7100

Di-. Albert C. Holt
Ot’fice of Munitions

Office of the Secretary of State
ODDRE/TWP
P~n[ii~ol), Room 3B1060”
Washington, DC 20301-3100

Mr. Daniel Hulwm,an

V,anguard Research, Inc.
10306 Eamrr Place, Suite 450
Fairfax. VA 22030-2201

C. J. Holland, Director
Math and Information Sciences

AFOSR/NM, Boiling AFB
Washington, DC 20332-6448

David A. Hopkins
U.S. Army Ballistic Research Laboratory
Attn: SLCBR-IB-M

Aberdeen Proving Ground, MD 21 tX)5-5066

William Hufferd
United Technologies
Chemical Systems Divison
P.0, Box 50015

ScanJose, CA 95150-0015

T.J,R. Hughes
Department of Mechanical Engineering
Stanford University
pdo Alto, CA 94306

James P. Johnson
Technology Dcveloprn&nt
Rrn L 120, CPC Analysis Department
General Motors Corporation
Engineering Center
3(M)03V:in Dyke Avenue

W,arren, MI 48090-9060”

Jerome B. Johnson

USACRREL
Building 4070

Ft. Wainwright, AK 99703

Gordon R. Johnson

H(mcywcll, Inc.
5901 S, County Rd. 18

Edina, MN 55436

G. S. Jones
Submarine Tech Pmgrarn Support Cen[cr
DARPA/AVSTO

ISIS Wilson Blvd.
Ading[on, VA 22209

74

James W. Jones

Swanson Service Corporation
18700 Beach Blvd.
Suile 200-210
Huntington Be:ich, CA 9264H

T. H. Jorditn
Department of Earth, Atmospheric and Planetary

Sciences
MIT
Cambridge, MA 02139

M.H. Kales, Director

Cornell Theory Center
514A Engineering and Theory Center

Hoy Road, Cornell University
Ithaca, NY 14853

Kaman Sciences Corporation (2)

Attn: S. Diehl
V, Smith

1500 Garden of the Gods Road

Colorado Springs, CO 80933

H. G. Kaper

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

S. K,arin, Director
Supercomputing Dep.artmcnt
9500 Gihnan Drive

University of California at Sian Diego
La Jok, CA 92009

Dr. A.H. K:izi, Director
Nucle,ar Effects Directorate

U.S. Army Comb:it Systems Test Activity
Aberdeen Proving Ground, MD 21005-5059

H. B. Keller

217-50
Applied lvlathemaks Deptimenl

Cattech
Pasadena, CA 91125

M. J.Kelley
DARPA/DMO
1400 Wilson Blvd.
Arlington. VA 22209

K. W. Kennedy

Computer Science Department
Rice University
P.O. Box 1892
Houston, TX 77251

Gary Kemer

Research Engineer
Applied Mechanics and Structures
Battelle Pacific Northwest Laboratories
P.O. Box 999
Richland, WA 99352

Dr. Aram K. Kevorkian

Code 73(M
Naval Oce,an SystemsCenter
271 CaMina Blvd.

San Diego, CA 92152-5000

Sam. Key
MacNeal-Schwendler
815 Colorado Blvd,
Los Angeles, CA 90041

D. R. Kinkaid

Center for Numerical Analysis
RLM 13-150
University of Texas at Austin
Austin, TX 78712

T. A. Kitchens
Office of Energy Research

U.S. Department of Energy
Washington, DC 20554

Max Koontz
DOE/OAC/DP 5,1

Forrestat Building
1000 Independence Ave.
Washington, DC 20585

Dr.PeterL. Knepell
NTBIC\GEODYNAMICS
MSN-8930
Falcon AFB, CO 80912-5000

R~ymond D, Krieg
Engineering Science and Mechanics
301 Perkins Hall

University of Tennessee
Knoxville, TN 37996

75

V. Kunmr
Computer Science Depmlnent
University of Minnesota
Minneapolis, MN 55455

J. L:mnu(ti

MS B-186
Director, Supercomputer Rese,arch Inst.
Florida Stme University
Tallahassw, FL 32306

P, D. Lax
New York University- Courant
251 Mercer St.

New York, NY 10012

J.K, Lee
Dqxwtment Ot-Engineering Mechanics
Ohio State University
Columbus, OH 43210

L;twrence A. Lee, Executive Director
North Carolina Supercomputing Center
P.O. Box 12889

3021 Corn wallis Road
Reseamh Triangle Park. NC 27709

D~vid Levine
M:tthernatics and Computer Science
Argonne Natiomd Labormny
9700 C,ass Avenue South

Argonne, IL 60439

Trcnt R. Log:tn
Rockwell lnternationfl Group
M;lil Code NA40
12214 L,akewood Blvd.
Downcy, CA 90242

M. Louis S, Lome
SDIO/TIW

The Pentagon

W;whing[on, ~ qOqOl-7100

(i. Lyles
CIA

(1219 L:LvcI1Ct ,
Springtklcl VA 22152

S. F. McCm-mick
Computer M:lthemalics Group
University of Colorado at Denver
12(N Larimar St.
Denver. CO 80204

Frank M~iesti~

Principti Engineer
Applied Research Associates
4300 S:m Mateo Blvd.

Suite A220
Albuquerque, NM 87110

H. Mair (5)
Nmml Surface WarfMe Center
10901 New Ehunpshire Ave.

Silver Springs, MD 20903-5000
Attn: H. Mnir, W. Reed, W. HoIt, K. B.Kim,

P.Walters

M{wk Ma@us
California Rese:wch and Technology, Inc.

PO Box 2229
Princeton, NJ 08543-2229

T. A. Manteuft_el
Department of Mathematics
University of Colorado at Denver
Denver. CO 80202

Cmlos Mu_ino
Industry, Science, and Technology Depm_tment
Cmy Research Park
655 E. Lone Oak Dr.
Eagan, MN 55121

William S. Mark, Ph.D.
Lockheed - Org. 96-01
BuikJing 254E
3251 Hznover Street
Pato Alto, CA 94303-1191

D, Mttuskir

Orhmlo Technology, Inc.
P. o. Box x55
Shatimar, FL 32579

John M,Iy (2)
Kaman Sciences Corporation
1500 Garden of the Gods Rod
Cohmdo Springs, CO 80933
Ann: John M:Iy and S. Hones

J, Mcsirov
Thinking M:lchirws Inc.
245 FirsI Street
C:unbridge. MA 94550

76

JRtJlwrt E. fvlillslcin
Th4C
zd~~irs(SIWLII
(’ambridgr.MA 02 [42

G. Mohnkcl-n
N:lv:L1ClCcw Systems Ccnkr
code 73
SW Diego. CA ‘)2152-5000

C. Molcr
The M:t{hw~lrks
325 Linfield PI: ICC
Menlo P~uk. C A ‘)4(V5

V.D. Murly

SOW N. Will;urrctte Blvd.

School of Engineering
[Jnivcrsity 01 RM-I1:uKI
Fl)rlland. 01<97203

C, E. Ncedhmn
M:lxwclll.:dxw:ikwic~, Inc.
2.501 Ynlc S.E,, Suite ‘?00
All) IJLIU(LILjUt NM X7 I(K)

D. B. Nelson, Excc. Dir
Otlice of’ Ent>ryy Research
U.S. Dep:mtmcnt ~lf Energy
W@inglon. DC 20545

Jim NIH1lM
C(MIC6331
IN:IVd RCWXUL”IIL:dmrutory
Washington, DC 20375 -5(HM)

Willi:un ,Nes[er
Oak RirJgc N;ltional Laboratory
POBox 2009
O.&Ridge,TN 37831-8058

Jcl[Ncwmcycr

Org. 81-W
Building 157
1111 Lockheed way
Sunnyvale. CA 94089-3504

Dean Norman
W:ttmw:Lys Experiment SIatiotl
P.O. Box 63 I
Vicksburg. MS 39180

D. h4. Noscnchuck
Mech. :uld Aerospw-c Engineering DcpI.
D302 E. QUWJ
l%inc~ton University

Princeton, NJ08544

Office of Nawd Reswrch (2)
Altn: Rcmbert Jones

A.S. Kushner
Structured Iilccfmnics Division (Code 434)

800 N. Quincy Street
Arlington, VA 22217

Dennis L. Orph:d (3)
California Research & Technology [nc.
5117 Johnson Dr.

Pleasmkm, CA 94588
At[n: D. L.Orph;d, P.N.Scl]l~cidcwiIItl. S.P.5cgan

77

J. M. Ortega

Applied Mathematics Department
University of Virginia
Charlottesville, VA 22903

John Palmer
TMC

245 First Street
Cambridge, MA 02142

Robert J. Paluck, President
Convex Computer Corporation

3000 Waterview Parkway
P.0, Box 733851

Richardson, TX 75083-3851

Robert P,ardue
Martin M,arietta
Y-12 Plant, Bldg. 9998

Mail Stop 2
Oak Ridge, TN 37831

Kim Parnel]

Failure Analysis Associates, Inc.
149 Commonwealth Ave.
PO Box 3015
Menlo P,ark, CA 94025

S. V. Patter
Department of Mathematics
Van Vleck Hall
University of Wisconsin
Madison, WI 53706

Dr. Nisheeth Patel
U,S. Ann y Ballistic Rese:wch Lab
AMXBR-LFD
Aberdeen Proving Ground, MD 21005-5066

A, T. Pmua

Mcchanica] Engineering Department

77M:mchusetts Ave.
MIT
Cambridge, MA 02139

A. Patrinos, Acting Director
A[mos. and Climate Rcsch. Division
Office of Energy Research, ER-74
U.S. Department of Energy
Washington, DC 20545

R. F. Peierls

Mathematics Sciences Group, Bldg. 515
Brookhaven National Laboratory
Upton, NY 11973

K. Perko

Supercomputing Solutions, Inc.
6175 Mancy Ridge Dr.
San Diego, CA 92121

John Peu-esky
B.fflistic Research Lab, Launch & Flight Div.

SLCBR-LF-C
Aberdeen Proving Ground, MD 21 OO5-5W6

Mitchell R. Phillabaum
Mons,anto Research Corporation
MRC-MOUND
Mi,amisburg, OH 45342

Philfips Laboratory (3)
Attn: F. Allahadi

D. Ftdk

J. Secary

Nuclear Technology Branch
KirtlandAFB.NM87117-6008

Dr. Leslie Pierre
SDIO/ENA
The Pentagon
Washington, DC 20301-7100

R. J. Plemmons
Department of M,athem,atics and Computer Science

Wake Forest University
P.O. Box 7311

Winston Salem, NC 27109

John Prentice
Amparo Corporation

3700 Rio Grande, NW

Suite 5
Albuquerque, NM 87107-3042

Peter P. F. Mdkowski III
P.O. Box 1121
Los Alamos, NM 87544

J. Rattner
Intel Scientific Computers
15201 NW Greenbriar Pkwy.
Beavcrton, OR 97006

78

Harol(JE.Reml
S-Cubed
P.O. EtOX 1620
La Jolla, CA 9203$1620

Dr. John P, ReIelle, JI.

org. 94-90

Lockheed> Bldg. 254G
3251 H,mover Street
P:ilo Alto, CA 94304

J.A. Reuscher
Department of Nuclear Engineering

Texas A & M
College Station, TX 77843

J ,R. Rice
Computer Scicncc Department
Purdue University
West Lafayette, IN 47907

J. Richardson
DARPA/TTO
1400 Wilson Blvd.
Arlington, VA 22209

R. Roh,ani
U.S. Army Engineer Wata-wys Experiment Station
Attn: CEWES-SD

3909 Hdis Ferry Road
Vicksburg, MS 39180-6199

C. Rose
Electricity de France
1 Ave du Gen. De Gaulle
92141 Ekunart
France

R. Z. Rwkies
Physics and Astronomy Dcpartmeflt

100”Allen Hid]

Uniwrsi[y0[Pi[k%urg
Piltsburg, PA 15206

Y. Saad
University of Minnesota
4-192 EE/CSci Bldg.
200 Union St.
Minneapolis, MN 55455-() 159

A.H. Sameh, CSRD

305 Tatbot Laboratory
University of Illinois
104 S. Wright St.
Urhan:i, IL 61801

Don;dd W. Sandidge

U.S. Army Missile Ccmuruand
AMSMI-RLA
Redstone Arsenal, AZ 35898-5247

Steve !huer
K-Tech Corpwation
901 Pennsylv,artia N.E.
Albuquerque, NM 87110

M, H. Schultz
Department of Computer Science

Yak University
P,O. BOX2158
New Haven. CT 06520

he Schw,artz
NOSC, Code 733

S,an Diego, CA 92152-5000

L, Se,am,an
SRI Intemationat
333 Ravenswook Ave.
Menlo Park, CA 94025

A. H. Sherman
Scientific Computing Associates, Inc.
Suite 307,246 Church Street
New Haven, CT 06510

Dr. Horst D. Simon
Computer Sciences Corporation
NASA Ames Research Center, MS lW45-1

MoffettField,CA 94035-1000

L.Smam,Director
Supercomputer Applications
152 Supercomputer Applications
Bldg. 605 E. Springfield
Champaign, IL 61801

Vineet Singh
Microelectronics and Computer Tech. Corp.
3500 West Balcones Center Dr,

Austin, TX 78759

79

Mu-k Smilh
Acrophysics Brwrch
Calspan Corporation/AEDC Operations
MS 440
Arnold AFB, TN 37389

William R. Somsky
Ballistic Research Laboratory
SLCBR-SE-A, Bldg. 394
Aberdeen Proving Ground, MD 21005-5066

D. C. Sorenson

Department of M:uhematica] Sciences

Rice University
P.O. Box 1892
Houston, TX 77251

Soulhwest Rcsc:uch Institute (4)
Atm: Charles E. Anderson

C.J Kuhlm:m
Samit Roy
J.D. W,alker

P.O. Drawer 28510
San Antonio, TX 78284

s.squires
DARPA/ISTO
1400 Wilson Blvd.

Ading(on, VA 11109

N. Sriniv:Lsan
AMOCO Cor-por:ition
P.O. Box 87703
Chic:~g~~,IL 60680-0703

D. E. Stein
AT&T

100 South Jefferson Rd.
Whippany, NJ 07981

M. Slamrwdl, Progrxm Dirw[or

Divisionof MathematicalSciences

N:~timal Science Fmm&?ticm
Washington, DC 20550

G. W. Stew<art
Computer Science Dep,artmen(
University of Maryland
College Park, MD 20742

(’. Stmrt

DARPA/TTO
1400 Wilson Blvd.
Arlington, VA 22209

LTC James Swmkr
SDIO/SDA
The Pcnt:igon
W:~sllington, DC 2030”1-7100”

D.V. Swenson
Mechanical Enginw-ing Department

Durhmd Hall
KWIS;ISSI:I(C[Jnivcrsity
Manh:]utm, KS 66506

H.T, T:mg
Electric Power Research Institute
3412 Hillview Avenue

P.o, Box 10412
Palo Altir, CA 94304

Sing C. Tang
P.0,BOX 2053
RM 3039 Scientific L:ib
Dearborn, Ml 48121-2053

Bill Tanner

Space Science Laboratory
Baylor University
PO Box 7303
Waco. TX 76798

R. A. Tapi:~
Mtthcmatical Sciences Department

Rice University
P,O. BOX 1892

Houston, TX 77251

Gligor A. Tashkovich
210 Lake Strw[, Apt. SF
Ithacil, NY 14H50-3854

W illi:un J. Tedcschi

DNA/SPSP

6801 Telegraph Rd.
Alexandria, VA 2231(I

O. Storassli, MS-244
NASA Langley Research Center
Hampton, VA 23665

80

‘1’clcdyiw l~l-owll En~inccrillp (2)

-AIIn: John W. Wt~lt”shcrgcr
B. Singh

Cunlmings Research Park
?t)t) Sp:whln:u\ Dr.. NW

Po Box (U(Y)07
Hunts\iIlc. AL 1581)7-7007°

L>:~vid‘I’L>llCllh; llllIl

U. S. A~myl’wA A~lt~Jtn~J[iveC~~lnln:md
REWE Ccnlcr

Surviv:~bility Division
M:lil Code MASTA-RSS

Wumm, Ml 4KW7-5(MM)

A. Thaler, Prog. Dir.
Division ol’ M:tthcmatical Sciences
Computational Mathematics

No[ion:d Science Foundation
W:~shingtou. DC 20550

]ohn Tiplon
U, S. Army Engineer Division
HNDED-SY
Po Box 1600”
Hunlsvi}k, AL 35807

Randy Truman
Mechmical Engineering Department
Llniversi(y of New Mexico
Alhuqucrquc, NM H71.31

D, Z:ippdd
Techn(dogy Asscssmcnl Elr:mch

Eglin AFB, FL 32542-54.34

11.S.ArmyB;dlistic Rescurch L:h(]r:it{wy ({)j

Atm: R. Coates

Y. Huan.g
K. Kimwy

H. Meyer
G. Randers-Pehrson
D, Ekhd’fler
s. Seglctcs
G. Silsby
B. Sorenson

SLCBR-TB-P
Abrdcen proving Ground MD 210()$-5000

Depl. of AMES R-ol I (2)
Attn: David J. Benson

S. Nem:~t-Nasser
University of California S:rn Diego

la Jolla, CA 92093

Department of Aerospace Engineering ml
Engineering Mech:mics (4)
Attn: E,B. Becker

G.F. Czmy
J.T. Oden
M. Smrn

University of Texm
Austin. TX 78712

George Vmlergrift. Dist. Mgr.

Convex Computer COW.
3916 Juan Tabo NE, Suite 38
Albuquerque, NM8711 1

c.Vardxln
Department of Computer Science
Cornell University, Roo[n 5146

lIhJcii. NY 14853

R. G. Voigh(, MS 32-C

NASA Langley Rcsurch Ccn[er. ICASE
Hmnpton, VA 36665

David Wink, 36E
Bc(tis Atomic Power Laboratory
P.(3. Box 79

W’mt Milll;u]d. PA 1$I 22

Krishnan K. Wahi

Gram, Inc.
1709 Moon N,E.
Albuquerque, NM 87112

Stwtm J. Wallach, Sr. VP, Technology

(lmvcx Computer Coqmralion
30(N) Watemiew Parkway
P.O. Box 833X51
Richardson. TX 75083-3851

Paul T. Wang
Fabricating Technology Division
Aluminum Company of America
Alcoa Technical Center

Alco:l Center. PA 15069

R.C.Ward, Bid. 9207-A
M:llhmnatica] Sciences

Oak Ridge National Labor:itory
P,O. Box 4141
Oak Ridge, TN 37831-8083

Bob We:iver
Idaho Na[ional Engineering Lab
M,S .2603
P.0, BOX 1625
Idaho Fails, ID 83415

Brent Webb
Battelle Pacific Northwest Laboratories
M;iil Stop K6-47
Po Box 999
Richkmd, WA 99352

G. W. Wcigand
DARPA/CSTO
3701 N. Fairfax Ave.
Arling[on, VA 22203-1714

W,,(il)gll(lust Electric Corporation (4)
AIln: Todd HLM)vcr

Claire Knolle

D:in Kotcher

W~yneLong
Be((is Atomic Power Laboratory
P.O. Box 79
Wcsl Mifflin. PA 15122-0079

Tomtasz Wierzbicki
Department of Ocean Engineering
Bldg. 5-218
M,assachuselts Institute of Technology
Cambridge, MA 02139

B, Wilcox
DARPA/DSO
1400 Wilson Blvd.
ArIington, VA 22209

C. W. Wilson, Program Manager
Emerging Technologies
MS M 102-3/B 11

Digikd Equipment Corporation
146 Main Street
Maynard, MA 00175

P. R. Woodward

University of Minnesota
Department of Astronomy
116 Church Street SE
Minneapolis, MN 55455

M. Wunderlich, Director
Mathemalic,al Sciences Program
National Security Agency
Ft. George, G. Mead, MD 20755

Hishashi Yasumori
Staff Senior General Manager
KTEC-Kawasaki Steel

Teehnorese,arch Corporation
Hihiya Kokusai Bldg. 2-3
Uchisaiwaicho 2-chrome
Chiyoda-ku, Tokyo 100
Japan

D. M. Young
Center for Numerical Analysis
RLM 13.15[)
Universliy of TCXM at Auslin

Austin, TX 78712

RobertYoung (2)

Alcoa Laborah>rits
Alcoa Center, PA 15(M9
At[n: R. Young, J. McMichxl

M. F. Wheeler’
Ma[herna(ical Sciences Department
Rice University
P,O. Box 1892
Housl(m, TX 77251

William Zierke (2)
Applied Rese,arch Lab
Penn Shte University
P.O. Box 30
S~~te College, PA 16804
Attn: W. Zierke, G.T.Yeh

Steve Zilliacus
David Taylor Rese,wch Center
Mad Code 1750.1
Bethesda, MD 20084

J.A. Zukas

Compumtional Mechanics Consultants, Inc.
8600 La Salle Road
Suite 614
Towson, MD 21204

Los Ahtmos National Laboratory
Mail Station 5000
P.O. BOX 1663
Los Alamw, NM X7545

Attn: T. F. Ad;uns, MS F(]03

A(tn: J.D. Allen, MS G7X7
Ann: C,A. Anderson, MS J576
Attn: S.R. Atlas, MS B258
Attn: B. 1. Bennett, MS B221
Attn: S. T. Btmnion, MS F663

Ann: W. Bimhler, MS G787
Attn: P. J. Blewett, MS F663

Attn: M. W. Burken, MS G787
Attn: T.A. Buttler, MS J576
Ann: E. J. Chapy.ak, MS F663
Attn: R. A. Cl<ark, MS B257
Ann: W.A. Cook, MS K557
Attn: G. E. Cort, MS G787
Attn: B, J. Daly, MS B216
Attn: R.F. Davidson, MS K557
Attn: J.F.Davis, MS B294
Attn: J. K. Dicrres, MS J3216
Attn: J.L.Fales, MS J575
Attn: H. Flaush, MS C936
Attn: P.S. Folhsbee, MS G756

Attn: D,Forslund, MS E531
Attn: J.H. Fu, MS G787

Attn: S.P. Girrens, MS J576
Attn: R. P. Godwin, MS F663
Attn: F. Guerra, MS C931
Attn: F. Harlow, MS B216
Attn: W. B. Harvey, MS F663
Altn: R. Hill, MS D449
Attn: J.P. Hill, MS C931
Attn: B. L. HoIian, MS J569
Attn: K. S. Holi.an, MS B221
Attn: J. W. Hopson, MS B216
Ann: H. Horak, MS C936
Altn: M. L, Hudson, MS J970

Attn:E.S,Mar,MSG787
Ann; D.L. Jaegar, MS K557
Ann: J.N. Johnson, MS K557
Attn: N. L. Johnson, MS B216

Attn: J. F. Kerrisk, MS G787
At(n: M. Klein. MS F669
Attn:W. H. Lee, MS B226
Attn: M.W. Lewis, MS G787
A[tn: R. Malenl_ant, MS J562

Attn: D.Mandell, MS F663
Attn: L. G. M,argolin, MS D405
Attn: S. Marsh, MS K557
Attn: P.T. Maulden, MS K557
Ann: G. H. McC:ill, MS B218

83

Attn: J. K. Mcier, MS G7N7
Attn: R, W, Meier, MS G7S7

AI(n: K.A. Meyer, MS Ft563
At(n: N.R. Morse, MS B260
Attn: D.C. Nelson, MS G787
A(tn: A. T.Oyer, MS G787
Attn: R.B. Parker, MS G787
Attn: D.A. Rabem, MS G787
Attn: M. Rich, MS F669
Attn: P.R. Romero, MS G787
Attn:J.J.Ruminer,MSC931

Attn: M. SaJIota, MS B257
Am: DJ. Sandstorm, MS G756
Attn: W. Sparks, MS F&i3
Attn: L.H. Sullivan, MS K557
Attn: D. Tonks, MS B267
Attn: H. E. Trease, MS B257
Attn: B.M. Whea~ MS G787
Attn: A.B. White, MS-265
Attn: T.F. Wirnett, MS J562
Attn: L. Witt, MS C936
Attn: S. Woodruff, MS K557

Attn: Robert Young, MS K574

Univcrsitv 0[Cdifomia
Lawrence L iwmnorc National Laboratory

7000 East Ave.
P.o. Box 808
Livermort, CA 94550

A(tn: R, R. Borcher, MS L-669
At[n: D. E. Burton, MS L-18
Attn: R. C. Y. Chin, MS L-321
Attn: R. B. Christensen, MS L-35
Attn: R. E. Huddleston, MS L-61
Attn: J. M, LeB1.ant, MS L-35

Attn: J. R. McGraw, MS L-316
Atm: G. A. Michael, MS L-306
Atul: M. J. Murphy, MS L-368
Attn: L. R. Petzold, MS L-316
A[tn: J. E. Reaugh, MS L-290
Attn: D. J. Steinberg, MS L-35
Attn: R. Stoudt, MS L-200
Attn: R. E. Tipton, MS L-35
Attn: C. E. Rhoades, MS L-298

1. Internal

!23 I T,W.L. Sanford

1270 J. K. I<ice

1271 G. O. AIIshouse
1400 E. H, Barsis
1420 W, J. Camp
1421 S. S. Dostanjh
1421 D. R. G,ardner
1425 J, H. Biffl~

1425 S.W. AtEiwly

1425 S. T, Montgomery
15(X) E. H. Barsis
1510 J, C. Cummings

1511 J. S. Rotller
1512 A. C. Ratzel
1513 J. C. Cummings, Acting
1514 H. S. Morg,an

1514 V. L. Bergmann
1514 B. J. Thorne

1540 J. R. ASIy
1541 J. M. McGlaun
1541 K. Budge (50)
1541 M. G. Elrick

1541 E, S. Hertel

1541 R. J. Lawrence
1541 J. S. Peery

1541 A. C. Robkon
1541 T. G. Trucano

1541 L. Barrington
1541 RHALE Day File
1542 P, Y,a-rrington
1542 R. L. Bell
1542 W. T. Brown

1542 P. J. Chen
1542 J. E. Dunn

1542 H. E. Fang

1542 A. V. FcarIIswOrth

1542 G. 1. Kerley
1542 M. E. Kipp
1542 F. R, Norwood
1542 S. A. Silling
1543 P. L. St:inton
1543 J. A. Ang

1543 L, C. Chhabildas
1543 M, D. Furnish

1543 D. E. Grady
1543 J, W. Swegle
1543 J. L. Wise
1544 J, R. Asay, Acting
1544 C. R. Adams
1544 K. W. Gwinn

1544 E. Kephart
1544 F. J. Mello
1544 K. E. MetZinger
1544 E. D, Reedy
1544 K. W. Schuler

1544 G. D. Sjaardema
1544 A.M. Sktvin
1544 P. P. Stirbis
1544 R. K. Thomas
1545 D. R. M,artinez
1545 J. J. Allen
1545 L. Branstetter

1545 J. Dohner
1545 C. R. Dohrmann
1545 G. R, Eisler
1545 J. T. Foley
1545 D. W. Lobirz
1545 D. B. Longcope
1545 E. L. M,arek
1545 J. Pott
1545 J. R. Red-Horse
1545 D. J. Segalm,an
1550 C. W. Petemon

1551 J. K. Cole
1552 D. D, McBride

1553 W. L. Hermina
1554 D. P. Aeschliman

1555 w,P.Wolfe
1556 W. L. Oberkampf
1600 W. Herrrnann
2513 D. E. Mitchell

2513 S.H. Fischer
3141 TechnicaJ Libmry (5)
3141-5 Document Processing for DOE/OSTl (X)
3151 Technical Communications (3)
6418 S, L. Thompson
6418 L. N, Kmetyk

6429 K. E, Washington
6429 R. W. Osterrsen

6463 M.Berman
6463 K.Boyack
8240 C.W.Robinson
8241 G.A.Benedetti
8241 M.L.Chiesa
8241 L,E,Voelker
8242 M. R. Birnbmrm
8242 Jr L. Cherry
8242 J. J. Dike
8242 B. L, Kistler
8242 A. McDonald
8242 V. D. Revelli
8242 L. A. Rogers
8242 K. V. Trinh
8242 L. I. Weingarten

8243

8243
8243
8244
8244
8245
8245

8523
9014
9122
9123
9123

9123
9311

9311

M.L.Chll:tbresi
D.J. Bammann
V. K. Gabrielson
S. K. Griftiths
C. M. Hartwig
R. J. Kee

W. E, M.won

R. C, Christm:m
J, W. Keizur
R. O. Nd]urns

J.M.Holovka
M. J. Forrestal
J, T. Hi(chcock

A. J Chabai
T, Bergstresser

	CONTENTS
	ACKNOWLEDGMENT
	PREFACE
	SUMMARY
	1. INTRODUCTION
	1.1 VECTOR AND TENSOR OPERATIONS AND NOTATION
	1.2 OBJECT-ORIENTED PROGRAMMING AND THE C++ LANGUAGE

	2. THE PHYSLIB LIBRARY
	2.1 CLASS VECTOR
	2.2 CLASS TENSOR
	2.3 CLASS SYMTENSOR
	2.4 CLASS ANTITENSOR
	2.5 OPERATOR OVERLOAD FUNCTIONS
	2.6 METHODS
	2.7 PREDEFINED CONSTANTS

	3. USING THE PHYSLIB CLASSES
	3.1 USELESS OPERATIONS

	CONCLUSION
	REFERECES
	INDEX OF OPERATORS AND FUNCTIONS
	DISTRIBUTION

